Summary: | Basic proof-search tactics in logic and type theory can be seen as the
root-first applications of rules in an appropriate sequent calculus, preferably
without the redundancies generated by permutation of rules. This paper
addresses the issues of defining such sequent calculi for Pure Type Systems
(PTS, which were originally presented in natural deduction style) and then
organizing their rules for effective proof-search. We introduce the idea of
Pure Type Sequent Calculus with meta-variables (PTSCalpha), by enriching the
syntax of a permutation-free sequent calculus for propositional logic due to
Herbelin, which is strongly related to natural deduction and already well
adapted to proof-search. The operational semantics is adapted from Herbelin's
and is defined by a system of local rewrite rules as in cut-elimination, using
explicit substitutions. We prove confluence for this system. Restricting our
attention to PTSC, a type system for the ground terms of this system, we obtain
the Subject Reduction property and show that each PTSC is logically equivalent
to its corresponding PTS, and the former is strongly normalising iff the latter
is. We show how to make the logical rules of PTSC into a syntax-directed system
PS for proof-search, by incorporating the conversion rules as in
syntax-directed presentations of the PTS rules for type-checking. Finally, we
consider how to use the explicitly scoped meta-variables of PTSCalpha to
represent partial proof-terms, and use them to analyse interactive proof
construction. This sets up a framework PE in which we are able to study
proof-search strategies, type inhabitant enumeration and (higher-order)
unification.
|