Joint models for longitudinal and time-to-event data: a review of reporting quality with a view to meta-analysis

Abstract Background Joint models for longitudinal and time-to-event data are commonly used to simultaneously analyse correlated data in single study cases. Synthesis of evidence from multiple studies using meta-analysis is a natural next step but its feasibility depends heavily on the standard of re...

Full description

Bibliographic Details
Main Authors: Maria Sudell, Ruwanthi Kolamunnage-Dona, Catrin Tudur-Smith
Format: Article
Language:English
Published: BMC 2016-12-01
Series:BMC Medical Research Methodology
Subjects:
Online Access:http://link.springer.com/article/10.1186/s12874-016-0272-6
Description
Summary:Abstract Background Joint models for longitudinal and time-to-event data are commonly used to simultaneously analyse correlated data in single study cases. Synthesis of evidence from multiple studies using meta-analysis is a natural next step but its feasibility depends heavily on the standard of reporting of joint models in the medical literature. During this review we aim to assess the current standard of reporting of joint models applied in the literature, and to determine whether current reporting standards would allow or hinder future aggregate data meta-analyses of model results. Methods We undertook a literature review of non-methodological studies that involved joint modelling of longitudinal and time-to-event medical data. Study characteristics were extracted and an assessment of whether separate meta-analyses for longitudinal, time-to-event and association parameters were possible was made. Results The 65 studies identified used a wide range of joint modelling methods in a selection of software. Identified studies concerned a variety of disease areas. The majority of studies reported adequate information to conduct a meta-analysis (67.7% for longitudinal parameter aggregate data meta-analysis, 69.2% for time-to-event parameter aggregate data meta-analysis, 76.9% for association parameter aggregate data meta-analysis). In some cases model structure was difficult to ascertain from the published reports. Conclusions Whilst extraction of sufficient information to permit meta-analyses was possible in a majority of cases, the standard of reporting of joint models should be maintained and improved. Recommendations for future practice include clear statement of model structure, of values of estimated parameters, of software used and of statistical methods applied.
ISSN:1471-2288