Anaerobic co-digestion of alkali-pretreated groundnut shells and duck waste for methane yield optimization and sustainable environment

This study investigated the effect of the anaerobic co-digestion of duck waste and alkali-pretreated groundnut shells at mesophilic temperature for methane yield optimization and waste management. Co-digestion of duck waste and alkali-pretreated groundnut shells was carried out using 100, 75: 25, 50...

Full description

Bibliographic Details
Main Authors: Olatunji Kehinde O., Madyira Daniel M.
Format: Article
Language:English
Published: EDP Sciences 2023-01-01
Series:E3S Web of Conferences
Subjects:
Online Access:https://www.e3s-conferences.org/articles/e3sconf/pdf/2023/70/e3sconf_reee2023_02005.pdf
Description
Summary:This study investigated the effect of the anaerobic co-digestion of duck waste and alkali-pretreated groundnut shells at mesophilic temperature for methane yield optimization and waste management. Co-digestion of duck waste and alkali-pretreated groundnut shells was carried out using 100, 75: 25, 50: 50, 25: 75, and 100% duck waste: alkali-pretreated groundnut shells in a laboratory-batch digester at mesophilic temperature. The results indicated that anaerobic co-digestion of duck waste and alkali-pretreated groundnut shells is possible since no negative influence was observed during the joint digestion. It was observed that co-digestion released higher methane yield compared to mono-digestion. The optimum cumulative methane yield of 290 mL CH4 g/ VSadded was recorded from a 75: 25% ratio of duck waste: alkali-pretreated groundnut shells. This mixing ratio improved methane yield by 38%. This study confirms that the anaerobic co-digestion of duck waste and alkalipretreated groundnut shells can produce low-carbon fuel and economical waste management to maintain a sustainable environment.
ISSN:2267-1242