Characterization of neutralizing profiles in HIV-1 infected patients from whom the HJ16, HGN194 and HK20 mAbs were obtained.

Several new human monoclonal antibodies (mAbs) with a neutralizing potential across different subtypes have recently been described. Three mAbs, HJ16, HGN194 and HK20, were obtained from patients within the HIV-1 cohort of the Institute of Tropical Medicine (ITM). Our aim was to generate immunizatio...

Full description

Bibliographic Details
Main Authors: Sunita S Balla-Jhagjhoorsingh, Betty Willems, Liesbeth Heyndrickx, Leo Heyndrickx, Katleen Vereecken, Wouter Janssens, Michael S Seaman, Davide Corti, Antonio Lanzavecchia, David Davis, Guido Vanham
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2011-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC3189917?pdf=render
Description
Summary:Several new human monoclonal antibodies (mAbs) with a neutralizing potential across different subtypes have recently been described. Three mAbs, HJ16, HGN194 and HK20, were obtained from patients within the HIV-1 cohort of the Institute of Tropical Medicine (ITM). Our aim was to generate immunization antibodies equivalent to those seen in plasma. Here, we describe the selection and characterization of patient plasma and their mAbs, using a range of neutralization assays, including several peripheral blood mononuclear cell (PBMC) based assays and replicating primary viruses as well as cell line based assays and pseudoviruses (PV). The principal criterion for selection of patient plasma was the activity in an 'extended incubation phase' PBMC assay. Neutralizing Abs, derived from their memory B cells, were then selected by ELISA with envelope proteins as solid phase. MAbs were subsequently tested in a high-throughput HOS-PV assay to assess functional neutralization. The present study indicates that the strong profiles in the patients' plasma were not solely due to antibodies represented by the newly isolated mAbs. Although results from the various assays were divergent, they by and large indicate that neutralizing Abs to other epitopes of the HIV-1 envelope are present in the plasma and synergy between Abs may be important. Thus, the spectrum of the obtained mAbs does not cover the range of cross-reactivity seen in plasma in these carefully selected patients irrespective of which neutralization assay is used. Nevertheless, these mAbs are relevant for immunogen discovery because they bind to the recombinant glycoproteins to which the immune response needs to be targeted in vivo. Our observations illustrate the remaining challenges required for successful immunogen design and development.
ISSN:1932-6203