Contact geometry and quantum mechanics

We present a generally covariant approach to quantum mechanics in which generalized positions, momenta and time variables are treated as coordinates on a fundamental “phase-spacetime”. We show that this covariant starting point makes quantization into a purely geometric flatness condition. This make...

Full description

Bibliographic Details
Main Authors: Gabriel Herczeg, Andrew Waldron
Format: Article
Language:English
Published: Elsevier 2018-06-01
Series:Physics Letters B
Online Access:http://www.sciencedirect.com/science/article/pii/S0370269318302922
Description
Summary:We present a generally covariant approach to quantum mechanics in which generalized positions, momenta and time variables are treated as coordinates on a fundamental “phase-spacetime”. We show that this covariant starting point makes quantization into a purely geometric flatness condition. This makes quantum mechanics purely geometric, and possibly even topological. Our approach is especially useful for time-dependent problems and systems subject to ambiguities in choices of clock or observer. As a byproduct, we give a derivation and generalization of the Wigner functions of standard quantum mechanics.
ISSN:0370-2693