Contact geometry and quantum mechanics
We present a generally covariant approach to quantum mechanics in which generalized positions, momenta and time variables are treated as coordinates on a fundamental “phase-spacetime”. We show that this covariant starting point makes quantization into a purely geometric flatness condition. This make...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2018-06-01
|
Series: | Physics Letters B |
Online Access: | http://www.sciencedirect.com/science/article/pii/S0370269318302922 |
Summary: | We present a generally covariant approach to quantum mechanics in which generalized positions, momenta and time variables are treated as coordinates on a fundamental “phase-spacetime”. We show that this covariant starting point makes quantization into a purely geometric flatness condition. This makes quantum mechanics purely geometric, and possibly even topological. Our approach is especially useful for time-dependent problems and systems subject to ambiguities in choices of clock or observer. As a byproduct, we give a derivation and generalization of the Wigner functions of standard quantum mechanics. |
---|---|
ISSN: | 0370-2693 |