Machine Learning to Predict Enzyme–Substrate Interactions in Elucidation of Synthesis Pathways: A Review

Enzyme–substrate interactions play a fundamental role in elucidating synthesis pathways and synthetic biology, as they allow for the understanding of important aspects of a reaction. Establishing the interaction experimentally is a slow and costly process, which is why this problem has been addresse...

Full description

Bibliographic Details
Main Authors: Luis F. Salas-Nuñez, Alvaro Barrera-Ocampo, Paola A. Caicedo, Natalie Cortes, Edison H. Osorio, Maria F. Villegas-Torres, Andres F. González Barrios
Format: Article
Language:English
Published: MDPI AG 2024-03-01
Series:Metabolites
Subjects:
Online Access:https://www.mdpi.com/2218-1989/14/3/154
_version_ 1797240083546374144
author Luis F. Salas-Nuñez
Alvaro Barrera-Ocampo
Paola A. Caicedo
Natalie Cortes
Edison H. Osorio
Maria F. Villegas-Torres
Andres F. González Barrios
author_facet Luis F. Salas-Nuñez
Alvaro Barrera-Ocampo
Paola A. Caicedo
Natalie Cortes
Edison H. Osorio
Maria F. Villegas-Torres
Andres F. González Barrios
author_sort Luis F. Salas-Nuñez
collection DOAJ
description Enzyme–substrate interactions play a fundamental role in elucidating synthesis pathways and synthetic biology, as they allow for the understanding of important aspects of a reaction. Establishing the interaction experimentally is a slow and costly process, which is why this problem has been addressed using computational methods such as molecular dynamics, molecular docking, and Monte Carlo simulations. Nevertheless, this type of method tends to be computationally slow when dealing with a large search space. Therefore, in recent years, methods based on artificial intelligence, such as support vector machines, neural networks, or decision trees, have been implemented, significantly reducing the computing time and covering vast search spaces. These methods significantly reduce the computation time and cover broad search spaces, rapidly reducing the number of interacting candidates, as they allow repetitive processes to be automated and patterns to be extracted, are adaptable, and have the capacity to handle large amounts of data. This article analyzes these artificial intelligence-based approaches, presenting their common structure, advantages, disadvantages, limitations, challenges, and future perspectives.
first_indexed 2024-04-24T18:01:48Z
format Article
id doaj.art-9d91e700c17642a79708279f54bfd68c
institution Directory Open Access Journal
issn 2218-1989
language English
last_indexed 2024-04-24T18:01:48Z
publishDate 2024-03-01
publisher MDPI AG
record_format Article
series Metabolites
spelling doaj.art-9d91e700c17642a79708279f54bfd68c2024-03-27T13:54:09ZengMDPI AGMetabolites2218-19892024-03-0114315410.3390/metabo14030154Machine Learning to Predict Enzyme–Substrate Interactions in Elucidation of Synthesis Pathways: A ReviewLuis F. Salas-Nuñez0Alvaro Barrera-Ocampo1Paola A. Caicedo2Natalie Cortes3Edison H. Osorio4Maria F. Villegas-Torres5Andres F. González Barrios6Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá 111711, ColombiaGrupo Natura, Facultad de Ingeniería, Diseño y Ciencias Aplicadas, Departamento de Ciencias Farmacéuticas y Químicas, Universidad ICESI, Calle 18 No. 122-135, Cali 760031, ColombiaGrupo Natura, Facultad de Ingeniería, Diseño y Ciencias Aplicadas, Departamento de Ciencias Biológicas, Bioprocesos y Biotecnología, Universidad ICESI, Calle 18 No. 122-135, Cali 760031, ColombiaGrupo de Investigación en Química Bioorgánica y Sistemas Moleculares (QBOSMO), Faculty of Natural Sciences and Mathematics, Universidad de Ibagué, Ibagué 730002, ColombiaGrupo de Investigación en Química Bioorgánica y Sistemas Moleculares (QBOSMO), Faculty of Natural Sciences and Mathematics, Universidad de Ibagué, Ibagué 730002, ColombiaCentro de Investigaciones Microbiológicas (CIMIC), Department of Biological Sciences, Universidad de los Andes, Bogotá 111711, ColombiaGrupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá 111711, ColombiaEnzyme–substrate interactions play a fundamental role in elucidating synthesis pathways and synthetic biology, as they allow for the understanding of important aspects of a reaction. Establishing the interaction experimentally is a slow and costly process, which is why this problem has been addressed using computational methods such as molecular dynamics, molecular docking, and Monte Carlo simulations. Nevertheless, this type of method tends to be computationally slow when dealing with a large search space. Therefore, in recent years, methods based on artificial intelligence, such as support vector machines, neural networks, or decision trees, have been implemented, significantly reducing the computing time and covering vast search spaces. These methods significantly reduce the computation time and cover broad search spaces, rapidly reducing the number of interacting candidates, as they allow repetitive processes to be automated and patterns to be extracted, are adaptable, and have the capacity to handle large amounts of data. This article analyzes these artificial intelligence-based approaches, presenting their common structure, advantages, disadvantages, limitations, challenges, and future perspectives.https://www.mdpi.com/2218-1989/14/3/154enzyme–substrate interactionartificial intelligencesynthesis routesenzyme classificationmolecular descriptorstraining data
spellingShingle Luis F. Salas-Nuñez
Alvaro Barrera-Ocampo
Paola A. Caicedo
Natalie Cortes
Edison H. Osorio
Maria F. Villegas-Torres
Andres F. González Barrios
Machine Learning to Predict Enzyme–Substrate Interactions in Elucidation of Synthesis Pathways: A Review
Metabolites
enzyme–substrate interaction
artificial intelligence
synthesis routes
enzyme classification
molecular descriptors
training data
title Machine Learning to Predict Enzyme–Substrate Interactions in Elucidation of Synthesis Pathways: A Review
title_full Machine Learning to Predict Enzyme–Substrate Interactions in Elucidation of Synthesis Pathways: A Review
title_fullStr Machine Learning to Predict Enzyme–Substrate Interactions in Elucidation of Synthesis Pathways: A Review
title_full_unstemmed Machine Learning to Predict Enzyme–Substrate Interactions in Elucidation of Synthesis Pathways: A Review
title_short Machine Learning to Predict Enzyme–Substrate Interactions in Elucidation of Synthesis Pathways: A Review
title_sort machine learning to predict enzyme substrate interactions in elucidation of synthesis pathways a review
topic enzyme–substrate interaction
artificial intelligence
synthesis routes
enzyme classification
molecular descriptors
training data
url https://www.mdpi.com/2218-1989/14/3/154
work_keys_str_mv AT luisfsalasnunez machinelearningtopredictenzymesubstrateinteractionsinelucidationofsynthesispathwaysareview
AT alvarobarreraocampo machinelearningtopredictenzymesubstrateinteractionsinelucidationofsynthesispathwaysareview
AT paolaacaicedo machinelearningtopredictenzymesubstrateinteractionsinelucidationofsynthesispathwaysareview
AT nataliecortes machinelearningtopredictenzymesubstrateinteractionsinelucidationofsynthesispathwaysareview
AT edisonhosorio machinelearningtopredictenzymesubstrateinteractionsinelucidationofsynthesispathwaysareview
AT mariafvillegastorres machinelearningtopredictenzymesubstrateinteractionsinelucidationofsynthesispathwaysareview
AT andresfgonzalezbarrios machinelearningtopredictenzymesubstrateinteractionsinelucidationofsynthesispathwaysareview