A non-uniform bound on Poisson approximation for a sum of negative binomial random variables
This paper uses the Stein–Chen method to determine a non-uniform bound on the point metric between the distribution of a sum of independent negative binomial random variables and a Poisson distribution with mean 1 n i i i r q , where r i and pi= I - qi are parameters of each nega...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Prince of Songkla University
2017-06-01
|
Series: | Songklanakarin Journal of Science and Technology (SJST) |
Subjects: | |
Online Access: | http://rdo.psu.ac.th/sjstweb/journal/39-3/39-3-10.pdf |
_version_ | 1819086184949743616 |
---|---|
author | Kanint Teerapabolarn |
author_facet | Kanint Teerapabolarn |
author_sort | Kanint Teerapabolarn |
collection | DOAJ |
description | This paper uses the Stein–Chen method to determine a non-uniform bound on the point metric between the distribution
of a sum of independent negative binomial random variables and a Poisson distribution with mean
1
n
i i
i
r q
, where r
i
and pi= I - qi are parameters of each negative binomial distribution. The result gives a good Poisson approximation when all qi
are small or λ is small. |
first_indexed | 2024-12-21T21:16:13Z |
format | Article |
id | doaj.art-9d9698b150ff42b6854b26ca072c7958 |
institution | Directory Open Access Journal |
issn | 0125-3395 |
language | English |
last_indexed | 2024-12-21T21:16:13Z |
publishDate | 2017-06-01 |
publisher | Prince of Songkla University |
record_format | Article |
series | Songklanakarin Journal of Science and Technology (SJST) |
spelling | doaj.art-9d9698b150ff42b6854b26ca072c79582022-12-21T18:50:00ZengPrince of Songkla UniversitySongklanakarin Journal of Science and Technology (SJST)0125-33952017-06-0139335535810.14456/sjst-psu.2017.39A non-uniform bound on Poisson approximation for a sum of negative binomial random variablesKanint Teerapabolarn0Department of Mathematics, Faculty of Science, Burapha University, Chonburi, 20131 ThailandThis paper uses the Stein–Chen method to determine a non-uniform bound on the point metric between the distribution of a sum of independent negative binomial random variables and a Poisson distribution with mean 1 n i i i r q , where r i and pi= I - qi are parameters of each negative binomial distribution. The result gives a good Poisson approximation when all qi are small or λ is small.http://rdo.psu.ac.th/sjstweb/journal/39-3/39-3-10.pdfnegative binomial distributionnon-uniform boundpoint metricPoisson approximationStein–Chen method |
spellingShingle | Kanint Teerapabolarn A non-uniform bound on Poisson approximation for a sum of negative binomial random variables Songklanakarin Journal of Science and Technology (SJST) negative binomial distribution non-uniform bound point metric Poisson approximation Stein–Chen method |
title | A non-uniform bound on Poisson approximation for a sum of negative binomial random variables |
title_full | A non-uniform bound on Poisson approximation for a sum of negative binomial random variables |
title_fullStr | A non-uniform bound on Poisson approximation for a sum of negative binomial random variables |
title_full_unstemmed | A non-uniform bound on Poisson approximation for a sum of negative binomial random variables |
title_short | A non-uniform bound on Poisson approximation for a sum of negative binomial random variables |
title_sort | non uniform bound on poisson approximation for a sum of negative binomial random variables |
topic | negative binomial distribution non-uniform bound point metric Poisson approximation Stein–Chen method |
url | http://rdo.psu.ac.th/sjstweb/journal/39-3/39-3-10.pdf |
work_keys_str_mv | AT kanintteerapabolarn anonuniformboundonpoissonapproximationforasumofnegativebinomialrandomvariables AT kanintteerapabolarn nonuniformboundonpoissonapproximationforasumofnegativebinomialrandomvariables |