A non-uniform bound on Poisson approximation for a sum of negative binomial random variables

This paper uses the Stein–Chen method to determine a non-uniform bound on the point metric between the distribution of a sum of independent negative binomial random variables and a Poisson distribution with mean 1 n i i i r q     , where r i and pi= I - qi are parameters of each nega...

Full description

Bibliographic Details
Main Author: Kanint Teerapabolarn
Format: Article
Language:English
Published: Prince of Songkla University 2017-06-01
Series:Songklanakarin Journal of Science and Technology (SJST)
Subjects:
Online Access:http://rdo.psu.ac.th/sjstweb/journal/39-3/39-3-10.pdf
_version_ 1819086184949743616
author Kanint Teerapabolarn
author_facet Kanint Teerapabolarn
author_sort Kanint Teerapabolarn
collection DOAJ
description This paper uses the Stein–Chen method to determine a non-uniform bound on the point metric between the distribution of a sum of independent negative binomial random variables and a Poisson distribution with mean 1 n i i i r q     , where r i and pi= I - qi are parameters of each negative binomial distribution. The result gives a good Poisson approximation when all qi are small or λ is small.
first_indexed 2024-12-21T21:16:13Z
format Article
id doaj.art-9d9698b150ff42b6854b26ca072c7958
institution Directory Open Access Journal
issn 0125-3395
language English
last_indexed 2024-12-21T21:16:13Z
publishDate 2017-06-01
publisher Prince of Songkla University
record_format Article
series Songklanakarin Journal of Science and Technology (SJST)
spelling doaj.art-9d9698b150ff42b6854b26ca072c79582022-12-21T18:50:00ZengPrince of Songkla UniversitySongklanakarin Journal of Science and Technology (SJST)0125-33952017-06-0139335535810.14456/sjst-psu.2017.39A non-uniform bound on Poisson approximation for a sum of negative binomial random variablesKanint Teerapabolarn0Department of Mathematics, Faculty of Science, Burapha University, Chonburi, 20131 ThailandThis paper uses the Stein–Chen method to determine a non-uniform bound on the point metric between the distribution of a sum of independent negative binomial random variables and a Poisson distribution with mean 1 n i i i r q     , where r i and pi= I - qi are parameters of each negative binomial distribution. The result gives a good Poisson approximation when all qi are small or λ is small.http://rdo.psu.ac.th/sjstweb/journal/39-3/39-3-10.pdfnegative binomial distributionnon-uniform boundpoint metricPoisson approximationStein–Chen method
spellingShingle Kanint Teerapabolarn
A non-uniform bound on Poisson approximation for a sum of negative binomial random variables
Songklanakarin Journal of Science and Technology (SJST)
negative binomial distribution
non-uniform bound
point metric
Poisson approximation
Stein–Chen method
title A non-uniform bound on Poisson approximation for a sum of negative binomial random variables
title_full A non-uniform bound on Poisson approximation for a sum of negative binomial random variables
title_fullStr A non-uniform bound on Poisson approximation for a sum of negative binomial random variables
title_full_unstemmed A non-uniform bound on Poisson approximation for a sum of negative binomial random variables
title_short A non-uniform bound on Poisson approximation for a sum of negative binomial random variables
title_sort non uniform bound on poisson approximation for a sum of negative binomial random variables
topic negative binomial distribution
non-uniform bound
point metric
Poisson approximation
Stein–Chen method
url http://rdo.psu.ac.th/sjstweb/journal/39-3/39-3-10.pdf
work_keys_str_mv AT kanintteerapabolarn anonuniformboundonpoissonapproximationforasumofnegativebinomialrandomvariables
AT kanintteerapabolarn nonuniformboundonpoissonapproximationforasumofnegativebinomialrandomvariables