A non-uniform bound on Poisson approximation for a sum of negative binomial random variables
This paper uses the Stein–Chen method to determine a non-uniform bound on the point metric between the distribution of a sum of independent negative binomial random variables and a Poisson distribution with mean 1 n i i i r q , where r i and pi= I - qi are parameters of each nega...
Main Author: | Kanint Teerapabolarn |
---|---|
Format: | Article |
Language: | English |
Published: |
Prince of Songkla University
2017-06-01
|
Series: | Songklanakarin Journal of Science and Technology (SJST) |
Subjects: | |
Online Access: | http://rdo.psu.ac.th/sjstweb/journal/39-3/39-3-10.pdf |
Similar Items
-
A non-uniform bound on binomial approximation to the beta binomial cumulative distribution function
by: Kanint Teerapabolarn, et al.
Published: (2019-02-01) -
Improvements of Poisson approximation for n-dimensional unit cube random graph
by: Kanint Teerapabolarn
Published: (2021-08-01) -
Bounds on Negative Binomial Approximation to Call Function
by: Amit N. Kumar
Published: (2024-02-01) -
On Approximation of the Tails of the Binomial Distribution with These of the Poisson Law
by: Sergei Nagaev, et al.
Published: (2021-04-01) -
Negative binomial regression
by: 412634 Hilbe, Joseph M.
Published: (2007)