Simulation of Cloud-aerosol Lidar with Orthogonal Polarization (CALIOP) Attenuated Backscatter Profiles Using the Global Model of Aerosol Processes (GLOMAP)
To permit the calculation of the radiative effects of atmospheric aerosols, we have linked our aerosol-chemical transport model (CTMGLOMAP) to a new radiation module (UKCARADAER). In order to help assess and improve the accuracy of the radiation code, in particular the height dependence of the predi...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
EDP Sciences
2016-01-01
|
Series: | EPJ Web of Conferences |
Online Access: | http://dx.doi.org/10.1051/epjconf/201611901005 |
Summary: | To permit the calculation of the radiative effects of atmospheric aerosols, we have linked our aerosol-chemical transport model (CTMGLOMAP) to a new radiation module (UKCARADAER). In order to help assess and improve the accuracy of the radiation code, in particular the height dependence of the predicted scattering, we have developed a module that simulates attenuated backscatter (ABS) profiles that would be measured by the satellite-borne Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) if it were to sample an atmosphere with the same aerosol loading as predicted by the CTM. Initial results of our comparisons of the predicted ABS profiles with actual CALIOP data are encouraging but some differences are noted, particularly in marine boundary layers where the scattering is currently under-predicted and in dust layers where it is often over-predicted. The sources of these differences are being investigated. |
---|---|
ISSN: | 2100-014X |