Whole-genome resequencing to unveil genetic characteristics and selection signatures of specific pathogen-free ducks

ABSTRACT: Specific pathogen-free ducks are important high-grade laboratory animals, with a key role in research related to poultry biosecurity, production, and breeding. However, the genetic characteristics of experimental duck varieties remain poorly explored. Herein we performed whole-genome reseq...

Full description

Bibliographic Details
Main Authors: Lanlan Li, Jinqiang Quan, Caixia Gao, Hongyi Liu, Haibo Yu, Hongyan Chen, Changyou Xia, Shengguo Zhao
Format: Article
Language:English
Published: Elsevier 2023-07-01
Series:Poultry Science
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S0032579123002675
Description
Summary:ABSTRACT: Specific pathogen-free ducks are important high-grade laboratory animals, with a key role in research related to poultry biosecurity, production, and breeding. However, the genetic characteristics of experimental duck varieties remain poorly explored. Herein we performed whole-genome resequencing to construct a single nucleotide polymorphism genetic map of the genomes of 3 experimental duck varieties [Jinding ducks (JD), Shaoxing ducks (SX), and Fujian Shanma ducks (SM)] to determine their genetic characteristics and identify selection signatures. Subsequent analyses of population structure and genetic diversity revealed that each duck variety formed a monophyletic group, with SM showing richer genetic diversity than JD and SX. Further, on exploring shared selection signatures, we found 2 overlapping genomic regions on chromosome Z of all experimental ducks, which comprised immune response-related genes (IL7R and IL6ST). Moreover, growth and skeletal development (IGF1R and GDF5), meat quality (FoxO1), and stress resistance (HSP90B1 and Gpx8-b) candidate gene loci were identified in strongly selected signatures specific to JD, SM, and SX, respectively. Our results identified the population genetic basis of experimental ducks at the whole-genome level, providing a framework for future molecular investigations of genetic variations and phenotypic changes. We believe that such studies will eventually contribute to the management of experimental animal resources.
ISSN:0032-5791