Updating Utility Functions on Preordered Sets

We consider the problem of extending a function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><msubsup><mrow></mrow><mrow><mspace width="-0.89996pt&q...

Full description

Bibliographic Details
Main Author: Pavel Chebotarev
Format: Article
Language:English
Published: MDPI AG 2023-11-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/11/22/4688
_version_ 1797458526342217728
author Pavel Chebotarev
author_facet Pavel Chebotarev
author_sort Pavel Chebotarev
collection DOAJ
description We consider the problem of extending a function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><msubsup><mrow></mrow><mrow><mspace width="-0.89996pt"></mspace><mi>P</mi></mrow><mrow></mrow></msubsup></mrow></semantics></math></inline-formula> defined on a subset <i> P </i> of an arbitrary set <i> X </i> to <i> X </i> strictly monotonically with respect to a preorder ≽ defined on <i> X </i>, without imposing continuity constraints. We show that whenever ≽ has a utility representation, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><msubsup><mrow></mrow><mrow><mspace width="-0.89996pt"></mspace><mi>P</mi></mrow><mrow></mrow></msubsup></mrow></semantics></math></inline-formula> is extendable if and only if it is gap-safe increasing. This property means that whenever <i><b>x</b></i><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow></mrow><mo>′</mo></msup><mo>≻</mo></mrow></semantics></math></inline-formula><i><b>x</b></i>, the infimum of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><msubsup><mrow></mrow><mrow><mspace width="-0.89996pt"></mspace><mi>P</mi></mrow><mrow></mrow></msubsup></mrow></semantics></math></inline-formula> on the upper contour of <i><b>x</b></i><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mo>′</mo></msup></semantics></math></inline-formula> exceeds the supremum of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><msubsup><mrow></mrow><mrow><mi>P</mi></mrow><mrow></mrow></msubsup></mrow></semantics></math></inline-formula> on the lower contour of <i><b>x</b></i>, where <i><b>x</b></i>, <i><b>x</b></i><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow></mrow><mo>′</mo></msup><mo>∈</mo><mover accent="true"><mi>X</mi><mo>˜</mo></mover></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover accent="true"><mi>X</mi><mo>˜</mo></mover></semantics></math></inline-formula> is <i> X </i> completed with two absolute ≽-extrema and, moreover, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><msubsup><mrow></mrow><mrow><mi>P</mi></mrow><mrow></mrow></msubsup></mrow></semantics></math></inline-formula> is weakly increasing. The completion of <i> X </i> makes the condition sufficient. The proposed method of extension is flexible in the sense that for any bounded utility representation <i> u </i> of ≽, it provides an extension of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><msubsup><mrow></mrow><mrow><mi>P</mi></mrow><mrow></mrow></msubsup></mrow></semantics></math></inline-formula> that coincides with <i> u </i> on a region of <i> X </i> that includes the set of <i> P</i>-neutral elements of <i> X </i>. An analysis of related topological theorems shows that the results obtained are not their consequences. The necessary and sufficient condition of extendability and the form of the extension are simplified when <i> P </i> is a Pareto set.
first_indexed 2024-03-09T16:38:24Z
format Article
id doaj.art-9db3405981af4cffbe20185ccd8d3c0c
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-09T16:38:24Z
publishDate 2023-11-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-9db3405981af4cffbe20185ccd8d3c0c2023-11-24T14:54:29ZengMDPI AGMathematics2227-73902023-11-011122468810.3390/math11224688Updating Utility Functions on Preordered SetsPavel Chebotarev0Technion–Israel Institute of Technology, Haifa 3200003, IsraelWe consider the problem of extending a function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><msubsup><mrow></mrow><mrow><mspace width="-0.89996pt"></mspace><mi>P</mi></mrow><mrow></mrow></msubsup></mrow></semantics></math></inline-formula> defined on a subset <i> P </i> of an arbitrary set <i> X </i> to <i> X </i> strictly monotonically with respect to a preorder ≽ defined on <i> X </i>, without imposing continuity constraints. We show that whenever ≽ has a utility representation, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><msubsup><mrow></mrow><mrow><mspace width="-0.89996pt"></mspace><mi>P</mi></mrow><mrow></mrow></msubsup></mrow></semantics></math></inline-formula> is extendable if and only if it is gap-safe increasing. This property means that whenever <i><b>x</b></i><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow></mrow><mo>′</mo></msup><mo>≻</mo></mrow></semantics></math></inline-formula><i><b>x</b></i>, the infimum of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><msubsup><mrow></mrow><mrow><mspace width="-0.89996pt"></mspace><mi>P</mi></mrow><mrow></mrow></msubsup></mrow></semantics></math></inline-formula> on the upper contour of <i><b>x</b></i><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mo>′</mo></msup></semantics></math></inline-formula> exceeds the supremum of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><msubsup><mrow></mrow><mrow><mi>P</mi></mrow><mrow></mrow></msubsup></mrow></semantics></math></inline-formula> on the lower contour of <i><b>x</b></i>, where <i><b>x</b></i>, <i><b>x</b></i><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow></mrow><mo>′</mo></msup><mo>∈</mo><mover accent="true"><mi>X</mi><mo>˜</mo></mover></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover accent="true"><mi>X</mi><mo>˜</mo></mover></semantics></math></inline-formula> is <i> X </i> completed with two absolute ≽-extrema and, moreover, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><msubsup><mrow></mrow><mrow><mi>P</mi></mrow><mrow></mrow></msubsup></mrow></semantics></math></inline-formula> is weakly increasing. The completion of <i> X </i> makes the condition sufficient. The proposed method of extension is flexible in the sense that for any bounded utility representation <i> u </i> of ≽, it provides an extension of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><msubsup><mrow></mrow><mrow><mi>P</mi></mrow><mrow></mrow></msubsup></mrow></semantics></math></inline-formula> that coincides with <i> u </i> on a region of <i> X </i> that includes the set of <i> P</i>-neutral elements of <i> X </i>. An analysis of related topological theorems shows that the results obtained are not their consequences. The necessary and sufficient condition of extendability and the form of the extension are simplified when <i> P </i> is a Pareto set.https://www.mdpi.com/2227-7390/11/22/4688extension of utility functionsmonotonicityutility representation of a preorderlifting theorems
spellingShingle Pavel Chebotarev
Updating Utility Functions on Preordered Sets
Mathematics
extension of utility functions
monotonicity
utility representation of a preorder
lifting theorems
title Updating Utility Functions on Preordered Sets
title_full Updating Utility Functions on Preordered Sets
title_fullStr Updating Utility Functions on Preordered Sets
title_full_unstemmed Updating Utility Functions on Preordered Sets
title_short Updating Utility Functions on Preordered Sets
title_sort updating utility functions on preordered sets
topic extension of utility functions
monotonicity
utility representation of a preorder
lifting theorems
url https://www.mdpi.com/2227-7390/11/22/4688
work_keys_str_mv AT pavelchebotarev updatingutilityfunctionsonpreorderedsets