Turbulence Detection in the Atmospheric Boundary Layer Using Coherent Doppler Wind Lidar and Microwave Radiometer

The refractive index structure constant (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>C</mi><mi>n</mi><mn>2</mn></msubsup></mrow></s...

Full description

Bibliographic Details
Main Authors: Pu Jiang, Jinlong Yuan, Kenan Wu, Lu Wang, Haiyun Xia
Format: Article
Language:English
Published: MDPI AG 2022-06-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/14/12/2951
_version_ 1797482620281421824
author Pu Jiang
Jinlong Yuan
Kenan Wu
Lu Wang
Haiyun Xia
author_facet Pu Jiang
Jinlong Yuan
Kenan Wu
Lu Wang
Haiyun Xia
author_sort Pu Jiang
collection DOAJ
description The refractive index structure constant (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>C</mi><mi>n</mi><mn>2</mn></msubsup></mrow></semantics></math></inline-formula>) is a key parameter used in describing the influence of turbulence on laser transmissions in the atmosphere. Three different methods for estimating <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>C</mi><mi>n</mi><mn>2</mn></msubsup></mrow></semantics></math></inline-formula> were analyzed in detail. A new method that uses a combination of these methods for continuous <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>C</mi><mi>n</mi><mn>2</mn></msubsup></mrow></semantics></math></inline-formula> profiling with both high temporal and spatial resolution is proposed and demonstrated. Under the assumption of the Kolmogorov “2/3 law”, the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>C</mi><mi>n</mi><mn>2</mn></msubsup></mrow></semantics></math></inline-formula> profile can be calculated by using the wind field and turbulent kinetic energy dissipation rate (TKEDR) measured by coherent Doppler wind lidar (CDWL) and other meteorological parameters derived from a microwave radiometer (MWR). In a horizontal experiment, a comparison between the results from our new method and measurements made by a large aperture scintillometer (LAS) is conducted. The correlation coefficient, mean error, and standard deviation between them in a six-day observation are 0.8073, 8.18 × 10<sup>−16</sup> m<sup>−2/3</sup> and 1.27 × 10<sup>−15</sup> m<sup>−2/3</sup>, respectively. In the vertical direction, the continuous profiling results of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>C</mi><mi>n</mi><mn>2</mn></msubsup></mrow></semantics></math></inline-formula> and other turbulence parameters with high resolution in the atmospheric boundary layer (ABL) are retrieved. In addition, the limitation and uncertainty of this method under different circumstances were analyzed, which shows that the relative error of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>C</mi><mi>n</mi><mn>2</mn></msubsup></mrow></semantics></math></inline-formula> estimation normally does not exceed 30% under the convective boundary layer (CBL).
first_indexed 2024-03-09T22:35:58Z
format Article
id doaj.art-9dbb72fe592f4188bd9e7d8860cefc66
institution Directory Open Access Journal
issn 2072-4292
language English
last_indexed 2024-03-09T22:35:58Z
publishDate 2022-06-01
publisher MDPI AG
record_format Article
series Remote Sensing
spelling doaj.art-9dbb72fe592f4188bd9e7d8860cefc662023-11-23T18:49:25ZengMDPI AGRemote Sensing2072-42922022-06-011412295110.3390/rs14122951Turbulence Detection in the Atmospheric Boundary Layer Using Coherent Doppler Wind Lidar and Microwave RadiometerPu Jiang0Jinlong Yuan1Kenan Wu2Lu Wang3Haiyun Xia4School of Earth and Space Science, University of Science and Technology of China, Hefei 230026, ChinaSchool of Earth and Space Science, University of Science and Technology of China, Hefei 230026, ChinaSchool of Earth and Space Science, University of Science and Technology of China, Hefei 230026, ChinaSchool of Earth and Space Science, University of Science and Technology of China, Hefei 230026, ChinaSchool of Earth and Space Science, University of Science and Technology of China, Hefei 230026, ChinaThe refractive index structure constant (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>C</mi><mi>n</mi><mn>2</mn></msubsup></mrow></semantics></math></inline-formula>) is a key parameter used in describing the influence of turbulence on laser transmissions in the atmosphere. Three different methods for estimating <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>C</mi><mi>n</mi><mn>2</mn></msubsup></mrow></semantics></math></inline-formula> were analyzed in detail. A new method that uses a combination of these methods for continuous <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>C</mi><mi>n</mi><mn>2</mn></msubsup></mrow></semantics></math></inline-formula> profiling with both high temporal and spatial resolution is proposed and demonstrated. Under the assumption of the Kolmogorov “2/3 law”, the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>C</mi><mi>n</mi><mn>2</mn></msubsup></mrow></semantics></math></inline-formula> profile can be calculated by using the wind field and turbulent kinetic energy dissipation rate (TKEDR) measured by coherent Doppler wind lidar (CDWL) and other meteorological parameters derived from a microwave radiometer (MWR). In a horizontal experiment, a comparison between the results from our new method and measurements made by a large aperture scintillometer (LAS) is conducted. The correlation coefficient, mean error, and standard deviation between them in a six-day observation are 0.8073, 8.18 × 10<sup>−16</sup> m<sup>−2/3</sup> and 1.27 × 10<sup>−15</sup> m<sup>−2/3</sup>, respectively. In the vertical direction, the continuous profiling results of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>C</mi><mi>n</mi><mn>2</mn></msubsup></mrow></semantics></math></inline-formula> and other turbulence parameters with high resolution in the atmospheric boundary layer (ABL) are retrieved. In addition, the limitation and uncertainty of this method under different circumstances were analyzed, which shows that the relative error of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>C</mi><mi>n</mi><mn>2</mn></msubsup></mrow></semantics></math></inline-formula> estimation normally does not exceed 30% under the convective boundary layer (CBL).https://www.mdpi.com/2072-4292/14/12/2951atmospheric turbulencecoherent Doppler wind lidarmicrowave radiometerturbulent kinetic energy dissipation ratebuoyancy termRichardson number
spellingShingle Pu Jiang
Jinlong Yuan
Kenan Wu
Lu Wang
Haiyun Xia
Turbulence Detection in the Atmospheric Boundary Layer Using Coherent Doppler Wind Lidar and Microwave Radiometer
Remote Sensing
atmospheric turbulence
coherent Doppler wind lidar
microwave radiometer
turbulent kinetic energy dissipation rate
buoyancy term
Richardson number
title Turbulence Detection in the Atmospheric Boundary Layer Using Coherent Doppler Wind Lidar and Microwave Radiometer
title_full Turbulence Detection in the Atmospheric Boundary Layer Using Coherent Doppler Wind Lidar and Microwave Radiometer
title_fullStr Turbulence Detection in the Atmospheric Boundary Layer Using Coherent Doppler Wind Lidar and Microwave Radiometer
title_full_unstemmed Turbulence Detection in the Atmospheric Boundary Layer Using Coherent Doppler Wind Lidar and Microwave Radiometer
title_short Turbulence Detection in the Atmospheric Boundary Layer Using Coherent Doppler Wind Lidar and Microwave Radiometer
title_sort turbulence detection in the atmospheric boundary layer using coherent doppler wind lidar and microwave radiometer
topic atmospheric turbulence
coherent Doppler wind lidar
microwave radiometer
turbulent kinetic energy dissipation rate
buoyancy term
Richardson number
url https://www.mdpi.com/2072-4292/14/12/2951
work_keys_str_mv AT pujiang turbulencedetectionintheatmosphericboundarylayerusingcoherentdopplerwindlidarandmicrowaveradiometer
AT jinlongyuan turbulencedetectionintheatmosphericboundarylayerusingcoherentdopplerwindlidarandmicrowaveradiometer
AT kenanwu turbulencedetectionintheatmosphericboundarylayerusingcoherentdopplerwindlidarandmicrowaveradiometer
AT luwang turbulencedetectionintheatmosphericboundarylayerusingcoherentdopplerwindlidarandmicrowaveradiometer
AT haiyunxia turbulencedetectionintheatmosphericboundarylayerusingcoherentdopplerwindlidarandmicrowaveradiometer