The two-component adjuvant IC31® boosts type i interferon production of human monocyte-derived dendritic cells via ligation of endosomal TLRs.

The aim of this study was to characterize and identify the mode of action of IC31®, a two-component vaccine adjuvant. We found that IC31® was accumulated in human peripheral blood monocytes, MHC class II positive cells and monocyte-derived DCs (moDCs) but not in plasmacytoid DCs (pDCs). In the prese...

Full description

Bibliographic Details
Main Authors: Attila Szabo, Peter Gogolak, Kitti Pazmandi, Katalin Kis-Toth, Karin Riedl, Benjamin Wizel, Karen Lingnau, Attila Bacsi, Bence Rethi, Eva Rajnavolgyi
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2013-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC3566214?pdf=render
Description
Summary:The aim of this study was to characterize and identify the mode of action of IC31®, a two-component vaccine adjuvant. We found that IC31® was accumulated in human peripheral blood monocytes, MHC class II positive cells and monocyte-derived DCs (moDCs) but not in plasmacytoid DCs (pDCs). In the presence of IC31® the differentiation of inflammatory CD1a(+) moDCs and the secretion of chemokines, TNF-α and IL-6 cytokines was inhibited but the production of IFNβ was increased. Sustained addition of IC31® to differentiating moDCs interfered with IκBα phosphorylation, while the level of phospho-IRF3 increased. We also showed that both IC31® and its KLK component exhibited a booster effect on type I IFN responses induced by the specific ligands of TLR3 or TLR7/8, whereas TLR9 ligand induces type I IFN production only in the presence of IC31® or ODN1. Furthermore, long term incubation of moDCs with IC31® caused significantly higher expression of IRF and IFN genes than a single 24 hr treatment. The adjuvant activity of IC31® on the IFN response was shown to be exerted through TLRs residing in the vesicular compartment of moDCs. Based on these results IC31® was identified as a moDC modulatory adjuvant that sets the balance of the NF-κB and IRF3 mediated signaling pathways to the production of IFNβ. Thus IC31® is emerging as a potent adjuvant to increase immune responses against intracellular pathogens and cancer in future vaccination strategies.
ISSN:1932-6203