On Asymptotic Efficiency of the <i>M</i><sub>2</sub><i>M</i><sub>4</sub> Signal-to-Noise Estimator for Deterministic Complex Sinusoids

The moment-based <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>M</mi><mn>2</mn></msub><msub><mi>M</mi><mn>4</mn></msub>&l...

Full description

Bibliographic Details
Main Author: Gianmarco Romano
Format: Article
Language:English
Published: MDPI AG 2021-07-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/21/15/4950
_version_ 1797525198763720704
author Gianmarco Romano
author_facet Gianmarco Romano
author_sort Gianmarco Romano
collection DOAJ
description The moment-based <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>M</mi><mn>2</mn></msub><msub><mi>M</mi><mn>4</mn></msub></mrow></semantics></math></inline-formula> signal-to-noise (SNR) estimator was proposed for a complex sinusoidal signal with a <i>deterministic</i> but unknown phase corrupted by additive Gaussian noise by Sekhar and Sreenivas. The authors studied its performances only through numerical examples and concluded that the proposed estimator is asymptotically efficient and exhibits finite sample super-efficiency for some combinations of signal and noise power. In this paper, we derive the analytical asymptotic performances of the proposed <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>M</mi><mn>2</mn></msub><msub><mi>M</mi><mn>4</mn></msub></mrow></semantics></math></inline-formula> SNR estimator, and we show that, contrary to what it has been concluded by Sekhar and Sreenivas, the proposed estimator is neither (asymptotically) efficient nor super-efficient. We also show that when dealing with deterministic signals, the covariance matrix needed to derive asymptotic performances must be explicitly derived as its known general form for random signals cannot be extended to deterministic signals. Numerical examples are provided whose results confirm the analytical findings.
first_indexed 2024-03-10T09:09:22Z
format Article
id doaj.art-9dc170d2fdc6474cbe7352f5cf41011d
institution Directory Open Access Journal
issn 1424-8220
language English
last_indexed 2024-03-10T09:09:22Z
publishDate 2021-07-01
publisher MDPI AG
record_format Article
series Sensors
spelling doaj.art-9dc170d2fdc6474cbe7352f5cf41011d2023-11-22T06:08:13ZengMDPI AGSensors1424-82202021-07-012115495010.3390/s21154950On Asymptotic Efficiency of the <i>M</i><sub>2</sub><i>M</i><sub>4</sub> Signal-to-Noise Estimator for Deterministic Complex SinusoidsGianmarco Romano0Department of Engineering, University of Campania “L. Vanvitelli”, 81031 Aversa, CE, ItalyThe moment-based <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>M</mi><mn>2</mn></msub><msub><mi>M</mi><mn>4</mn></msub></mrow></semantics></math></inline-formula> signal-to-noise (SNR) estimator was proposed for a complex sinusoidal signal with a <i>deterministic</i> but unknown phase corrupted by additive Gaussian noise by Sekhar and Sreenivas. The authors studied its performances only through numerical examples and concluded that the proposed estimator is asymptotically efficient and exhibits finite sample super-efficiency for some combinations of signal and noise power. In this paper, we derive the analytical asymptotic performances of the proposed <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>M</mi><mn>2</mn></msub><msub><mi>M</mi><mn>4</mn></msub></mrow></semantics></math></inline-formula> SNR estimator, and we show that, contrary to what it has been concluded by Sekhar and Sreenivas, the proposed estimator is neither (asymptotically) efficient nor super-efficient. We also show that when dealing with deterministic signals, the covariance matrix needed to derive asymptotic performances must be explicitly derived as its known general form for random signals cannot be extended to deterministic signals. Numerical examples are provided whose results confirm the analytical findings.https://www.mdpi.com/1424-8220/21/15/4950signal-to-noise ratio (SNR) estimationmethod of momentsasymptotic varianceestimator’s efficiencysuper-efficiencyCramer-Rao bound
spellingShingle Gianmarco Romano
On Asymptotic Efficiency of the <i>M</i><sub>2</sub><i>M</i><sub>4</sub> Signal-to-Noise Estimator for Deterministic Complex Sinusoids
Sensors
signal-to-noise ratio (SNR) estimation
method of moments
asymptotic variance
estimator’s efficiency
super-efficiency
Cramer-Rao bound
title On Asymptotic Efficiency of the <i>M</i><sub>2</sub><i>M</i><sub>4</sub> Signal-to-Noise Estimator for Deterministic Complex Sinusoids
title_full On Asymptotic Efficiency of the <i>M</i><sub>2</sub><i>M</i><sub>4</sub> Signal-to-Noise Estimator for Deterministic Complex Sinusoids
title_fullStr On Asymptotic Efficiency of the <i>M</i><sub>2</sub><i>M</i><sub>4</sub> Signal-to-Noise Estimator for Deterministic Complex Sinusoids
title_full_unstemmed On Asymptotic Efficiency of the <i>M</i><sub>2</sub><i>M</i><sub>4</sub> Signal-to-Noise Estimator for Deterministic Complex Sinusoids
title_short On Asymptotic Efficiency of the <i>M</i><sub>2</sub><i>M</i><sub>4</sub> Signal-to-Noise Estimator for Deterministic Complex Sinusoids
title_sort on asymptotic efficiency of the i m i sub 2 sub i m i sub 4 sub signal to noise estimator for deterministic complex sinusoids
topic signal-to-noise ratio (SNR) estimation
method of moments
asymptotic variance
estimator’s efficiency
super-efficiency
Cramer-Rao bound
url https://www.mdpi.com/1424-8220/21/15/4950
work_keys_str_mv AT gianmarcoromano onasymptoticefficiencyoftheimisub2subimisub4subsignaltonoiseestimatorfordeterministiccomplexsinusoids