List Star Edge-Coloring of Subcubic Graphs

A star edge-coloring of a graph G is a proper edge coloring such that every 2-colored connected subgraph of G is a path of length at most 3. For a graph G, let the list star chromatic index of G, ch′st(G), be the minimum k such that for any k-uniform list assignment L for the set of edges, G has a s...

Full description

Bibliographic Details
Main Authors: Kerdjoudj Samia, Kostochka Alexandr, Raspaud André
Format: Article
Language:English
Published: University of Zielona Góra 2018-11-01
Series:Discussiones Mathematicae Graph Theory
Subjects:
Online Access:https://doi.org/10.7151/dmgt.2037
_version_ 1797718030433648640
author Kerdjoudj Samia
Kostochka Alexandr
Raspaud André
author_facet Kerdjoudj Samia
Kostochka Alexandr
Raspaud André
author_sort Kerdjoudj Samia
collection DOAJ
description A star edge-coloring of a graph G is a proper edge coloring such that every 2-colored connected subgraph of G is a path of length at most 3. For a graph G, let the list star chromatic index of G, ch′st(G), be the minimum k such that for any k-uniform list assignment L for the set of edges, G has a star edge-coloring from L. Dvořák, Mohar and Šámal asked whether the list star chromatic index of every subcubic graph is at most 7. We prove that it is at most 8. We also prove that if the maximum average degree of a subcubic graph G is less than 73${7 \over 3}$ (respectively, 52${5 \over 2}$), then ch′st(G) ≤ 5 (respectively, ch′st(G) ≤ 6).
first_indexed 2024-03-12T08:45:02Z
format Article
id doaj.art-9dc4c773c085491fb23aa369284fe45c
institution Directory Open Access Journal
issn 2083-5892
language English
last_indexed 2024-03-12T08:45:02Z
publishDate 2018-11-01
publisher University of Zielona Góra
record_format Article
series Discussiones Mathematicae Graph Theory
spelling doaj.art-9dc4c773c085491fb23aa369284fe45c2023-09-02T16:29:57ZengUniversity of Zielona GóraDiscussiones Mathematicae Graph Theory2083-58922018-11-013841037105410.7151/dmgt.2037dmgt.2037List Star Edge-Coloring of Subcubic GraphsKerdjoudj Samia0Kostochka Alexandr1Raspaud André2L’IFORCE, Faculty of Mathematics, USTHB, BP 32 El-Alia, Bab-Ezzouar 16111, Algiers, AlgeriaUniversity of Illinois at Urbana-Champaign, Urbana, IL 61801, USA and Sobolev Institute of MathematicsNovosibirsk630090, RussiaLaBRI (Université de Bordeaux), 351 cours de la Libération 33405Talence Cedex, FranceA star edge-coloring of a graph G is a proper edge coloring such that every 2-colored connected subgraph of G is a path of length at most 3. For a graph G, let the list star chromatic index of G, ch′st(G), be the minimum k such that for any k-uniform list assignment L for the set of edges, G has a star edge-coloring from L. Dvořák, Mohar and Šámal asked whether the list star chromatic index of every subcubic graph is at most 7. We prove that it is at most 8. We also prove that if the maximum average degree of a subcubic graph G is less than 73${7 \over 3}$ (respectively, 52${5 \over 2}$), then ch′st(G) ≤ 5 (respectively, ch′st(G) ≤ 6).https://doi.org/10.7151/dmgt.2037graph coloringedge coloringstar coloringplanar graphs05c15
spellingShingle Kerdjoudj Samia
Kostochka Alexandr
Raspaud André
List Star Edge-Coloring of Subcubic Graphs
Discussiones Mathematicae Graph Theory
graph coloring
edge coloring
star coloring
planar graphs
05c15
title List Star Edge-Coloring of Subcubic Graphs
title_full List Star Edge-Coloring of Subcubic Graphs
title_fullStr List Star Edge-Coloring of Subcubic Graphs
title_full_unstemmed List Star Edge-Coloring of Subcubic Graphs
title_short List Star Edge-Coloring of Subcubic Graphs
title_sort list star edge coloring of subcubic graphs
topic graph coloring
edge coloring
star coloring
planar graphs
05c15
url https://doi.org/10.7151/dmgt.2037
work_keys_str_mv AT kerdjoudjsamia liststaredgecoloringofsubcubicgraphs
AT kostochkaalexandr liststaredgecoloringofsubcubicgraphs
AT raspaudandre liststaredgecoloringofsubcubicgraphs