All-Optical Parametric-Resonance Magnetometer Based on <sup>4</sup>He Atomic Alignment

Parametric-resonance magnetometer is a high-sensitivity quantum sensor characterized by applying the non-resonant radio-frequency (RF) fields to the atomic ensemble. The RF fields lead to crosstalk in the multi-sensor design, thus disturbing the magnetic-field measurement results. We propose an opti...

Full description

Bibliographic Details
Main Authors: Bowen Wang, Xiang Peng, Haidong Wang, Wei Xiao, Hong Guo
Format: Article
Language:English
Published: MDPI AG 2022-05-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/22/11/4184
Description
Summary:Parametric-resonance magnetometer is a high-sensitivity quantum sensor characterized by applying the non-resonant radio-frequency (RF) fields to the atomic ensemble. The RF fields lead to crosstalk in the multi-sensor design, thus disturbing the magnetic-field measurement results. We propose an optically modulated alignment-based <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mn>4</mn></msup></semantics></math></inline-formula>He parametric-resonance magnetometer. By using the fictitious field generated by the modulated light shift, parametric resonance is realized, and crosstalk caused by the magnetic RF field is prevented. The relative intensity noise of the lasers is suppressed to optimize the sensitivity of the magnetometer. Our magnetometer experimentally demonstrates a magnetic-field noise floor of 130 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mspace width="3.33333pt"></mspace><mi>fT</mi><mo>/</mo><msup><mi>Hz</mi><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup></mrow></semantics></math></inline-formula> in both open- and closed-loop operations and has the potential to reach 70 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mspace width="3.33333pt"></mspace><mi>fT</mi><mo>/</mo><msup><mi>Hz</mi><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup></mrow></semantics></math></inline-formula> when compared with the optimized magnetic RF scheme. It provides near-zero magnetic-field measurements with a 2 kHz bandwidth at room temperature, which is useful for high-bandwidth measurements in biomagnetic applications.
ISSN:1424-8220