Homeostatic and toxic mechanisms regulating manganese uptake, retention, and elimination
This review attempts to summarize and clarify our basic knowledge as to the various factors that potentially influence the risks imposed from chronic exposure to high atmospheric levels of manganese (Mn). The studies describe the interrelationship of the different systems in the body that regulate M...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2006-01-01
|
Series: | Biological Research |
Subjects: | |
Online Access: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-97602006000100006 |
_version_ | 1818260551006945280 |
---|---|
author | JEROME A ROTH |
author_facet | JEROME A ROTH |
author_sort | JEROME A ROTH |
collection | DOAJ |
description | This review attempts to summarize and clarify our basic knowledge as to the various factors that potentially influence the risks imposed from chronic exposure to high atmospheric levels of manganese (Mn). The studies describe the interrelationship of the different systems in the body that regulate Mn homeostasis by characterizing specific, biological components involved in its systemic and cellular uptake and its elimination from the body. A syndrome known as manganism occurs when individuals are exposed chronically to high levels of Mn, consisting of reduced response speed, intellectual deficits, mood changes, and compulsive behaviors in the initial stages of the disorder to more prominent and irreversible extrapyramidal dysfunction resembling Parkinson's disease upon protracted exposure. Mn intoxication is most often associated with occupations in which abnormally high atmospheric concentrations prevail, such as in welding and mining. There are three potentially important routes by which Mn in inspired air can gain access the body to: 1) direct uptake into the CNS via uptake into the olfactory or trigeminal presynaptic nerve endings located in the nasal mucosa and the subsequent retrograde axonal transport directly into the CNS; 2) transport across the pulmonary epithelial lining and its subsequent deposition into lymph or blood; and/or 3) mucocilliary elevator clearance from the lung and the subsequent ingestion of the metal in the gastrointestinal tract. Each of these processes and their overall contribution to the uptake of Mn in the body is discussed in this review as well as a description of the various mechanisms that have been proposed for the transport of Mn across the blood-brain barrier which include both a transferrin-dependent and a transferrin-independent process that may involve store-operated Ca channels. |
first_indexed | 2024-12-12T18:33:08Z |
format | Article |
id | doaj.art-9ddd09f40b4e405ba032324f238fd7ea |
institution | Directory Open Access Journal |
issn | 0716-9760 0717-6287 |
language | English |
last_indexed | 2024-12-12T18:33:08Z |
publishDate | 2006-01-01 |
publisher | BMC |
record_format | Article |
series | Biological Research |
spelling | doaj.art-9ddd09f40b4e405ba032324f238fd7ea2022-12-22T00:15:52ZengBMCBiological Research0716-97600717-62872006-01-013914557Homeostatic and toxic mechanisms regulating manganese uptake, retention, and eliminationJEROME A ROTHThis review attempts to summarize and clarify our basic knowledge as to the various factors that potentially influence the risks imposed from chronic exposure to high atmospheric levels of manganese (Mn). The studies describe the interrelationship of the different systems in the body that regulate Mn homeostasis by characterizing specific, biological components involved in its systemic and cellular uptake and its elimination from the body. A syndrome known as manganism occurs when individuals are exposed chronically to high levels of Mn, consisting of reduced response speed, intellectual deficits, mood changes, and compulsive behaviors in the initial stages of the disorder to more prominent and irreversible extrapyramidal dysfunction resembling Parkinson's disease upon protracted exposure. Mn intoxication is most often associated with occupations in which abnormally high atmospheric concentrations prevail, such as in welding and mining. There are three potentially important routes by which Mn in inspired air can gain access the body to: 1) direct uptake into the CNS via uptake into the olfactory or trigeminal presynaptic nerve endings located in the nasal mucosa and the subsequent retrograde axonal transport directly into the CNS; 2) transport across the pulmonary epithelial lining and its subsequent deposition into lymph or blood; and/or 3) mucocilliary elevator clearance from the lung and the subsequent ingestion of the metal in the gastrointestinal tract. Each of these processes and their overall contribution to the uptake of Mn in the body is discussed in this review as well as a description of the various mechanisms that have been proposed for the transport of Mn across the blood-brain barrier which include both a transferrin-dependent and a transferrin-independent process that may involve store-operated Ca channels.http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-97602006000100006manganeseironlungParkinson's diseasedivalent metal transporter (DMT1)transferrintransferrin receptor |
spellingShingle | JEROME A ROTH Homeostatic and toxic mechanisms regulating manganese uptake, retention, and elimination Biological Research manganese iron lung Parkinson's disease divalent metal transporter (DMT1) transferrin transferrin receptor |
title | Homeostatic and toxic mechanisms regulating manganese uptake, retention, and elimination |
title_full | Homeostatic and toxic mechanisms regulating manganese uptake, retention, and elimination |
title_fullStr | Homeostatic and toxic mechanisms regulating manganese uptake, retention, and elimination |
title_full_unstemmed | Homeostatic and toxic mechanisms regulating manganese uptake, retention, and elimination |
title_short | Homeostatic and toxic mechanisms regulating manganese uptake, retention, and elimination |
title_sort | homeostatic and toxic mechanisms regulating manganese uptake retention and elimination |
topic | manganese iron lung Parkinson's disease divalent metal transporter (DMT1) transferrin transferrin receptor |
url | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-97602006000100006 |
work_keys_str_mv | AT jeromearoth homeostaticandtoxicmechanismsregulatingmanganeseuptakeretentionandelimination |