Summary: | We study chiral models in one spatial dimension, both static and periodically driven. We demonstrate that their topological properties may be read out through the long time limit of a bulk observable, the mean chiral displacement. The derivation of this result is done in terms of spectral projectors, allowing for a detailed understanding of the physics. We show that the proposed detection converges rapidly and it can be implemented in a wide class of chiral systems. Furthermore, it can measure arbitrary winding numbers and topological boundaries, it applies to all non-interacting systems, independently of their quantum statistics, and it requires no additional elements, such as external fields, nor filled bands.
|