Evaluation of Gamma Radiation Properties of Four Types of Surgical Stainless Steel in the Energy Range of 17.50–25.29 keV

In this study, the gamma radiation properties of four types of surgical-grade stainless steel (304, 304L, 316 and 316L) were investigated. The effective atomic number Z<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics>&...

Full description

Bibliographic Details
Main Authors: Mohammad Marashdeh, Ibrahim F. Al-Hamarneh
Format: Article
Language:English
Published: MDPI AG 2021-11-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/14/22/6873
_version_ 1797509583549235200
author Mohammad Marashdeh
Ibrahim F. Al-Hamarneh
author_facet Mohammad Marashdeh
Ibrahim F. Al-Hamarneh
author_sort Mohammad Marashdeh
collection DOAJ
description In this study, the gamma radiation properties of four types of surgical-grade stainless steel (304, 304L, 316 and 316L) were investigated. The effective atomic number Z<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mi>e</mi><mi>f</mi><mi>f</mi></mrow></msub></semantics></math></inline-formula>, effective electron density N<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mi>e</mi><mi>f</mi><mi>f</mi></mrow></msub></semantics></math></inline-formula> and half-value layer (HVL) of four types of surgical-grade stainless steel were determined via the mass attenuation coefficient <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>μ</mi><mo>/</mo><mi>ρ</mi><mo>)</mo></mrow></semantics></math></inline-formula>. The <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>μ</mi><mo>/</mo><mi>ρ</mi></mrow></semantics></math></inline-formula> coefficients were determined experimentally using an X-ray fluorescence (XRF) technique and theoretically via the WinXCOM program. The K<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mi>α</mi><mn>1</mn></mrow></msub></semantics></math></inline-formula> of XRF photons in the energy range between 17.50 and 25.29 keV was used from pure metal plates of molybdenum (Mo), palladium (Pd), silver (Ag) and tin (Sn). A comparison between the experimental and theoretical values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>μ</mi><mo>/</mo><mi>ρ</mi></mrow></semantics></math></inline-formula> revealed that the experimental values were lower than the theoretical calculations. The relative differences between the theoretical and experimental values were found to decrease with increasing photon energy. The lowest percentage difference between the experimental and theoretical values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>μ</mi><mo>/</mo><mi>ρ</mi></mrow></semantics></math></inline-formula> was between −6.17% and −9.76% and was obtained at a photon energy of 25.29 keV. Sample 316L showed the highest value of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>μ</mi><mo>/</mo><mi>ρ</mi></mrow></semantics></math></inline-formula> at the energies 21.20, 22.19 and 25.29 keV. In addition, the measured results of Z<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mi>e</mi><mi>f</mi><mi>f</mi></mrow></msub></semantics></math></inline-formula> and N<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mi>e</mi><mi>f</mi><mi>f</mi></mrow></msub></semantics></math></inline-formula> for all samples behaved similarly in the given energy range and were found to be in good agreement with the calculations. The equivalent atomic number (Z<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mi>e</mi><mi>f</mi><mi>f</mi></mrow></msub></semantics></math></inline-formula>) of the investigated stainless-steel samples was calculated using the interpolation method to compare the samples at the same source energy. The 316L stainless steel had higher values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>μ</mi><mo>/</mo><mi>ρ</mi></mrow></semantics></math></inline-formula>, Z<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mi>e</mi><mi>f</mi><mi>f</mi></mrow></msub></semantics></math></inline-formula> and Z<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mi>e</mi><mi>q</mi></mrow></msub></semantics></math></inline-formula> and lower values of HVL compared with the other samples. Therefore, it is concluded that the 316L sample is more effective in absorbing gamma radiation.
first_indexed 2024-03-10T05:19:55Z
format Article
id doaj.art-9dfd0714cb2449338b8de119c7cdd8ba
institution Directory Open Access Journal
issn 1996-1944
language English
last_indexed 2024-03-10T05:19:55Z
publishDate 2021-11-01
publisher MDPI AG
record_format Article
series Materials
spelling doaj.art-9dfd0714cb2449338b8de119c7cdd8ba2023-11-23T00:10:07ZengMDPI AGMaterials1996-19442021-11-011422687310.3390/ma14226873Evaluation of Gamma Radiation Properties of Four Types of Surgical Stainless Steel in the Energy Range of 17.50–25.29 keVMohammad Marashdeh0Ibrahim F. Al-Hamarneh1Department of Physics, College of Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 90950, Riyadh 11623, Saudi ArabiaDepartment of Physics, Faculty of Science, Al-Balqa Applied University, Al-Salt 19117, JordanIn this study, the gamma radiation properties of four types of surgical-grade stainless steel (304, 304L, 316 and 316L) were investigated. The effective atomic number Z<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mi>e</mi><mi>f</mi><mi>f</mi></mrow></msub></semantics></math></inline-formula>, effective electron density N<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mi>e</mi><mi>f</mi><mi>f</mi></mrow></msub></semantics></math></inline-formula> and half-value layer (HVL) of four types of surgical-grade stainless steel were determined via the mass attenuation coefficient <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>μ</mi><mo>/</mo><mi>ρ</mi><mo>)</mo></mrow></semantics></math></inline-formula>. The <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>μ</mi><mo>/</mo><mi>ρ</mi></mrow></semantics></math></inline-formula> coefficients were determined experimentally using an X-ray fluorescence (XRF) technique and theoretically via the WinXCOM program. The K<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mi>α</mi><mn>1</mn></mrow></msub></semantics></math></inline-formula> of XRF photons in the energy range between 17.50 and 25.29 keV was used from pure metal plates of molybdenum (Mo), palladium (Pd), silver (Ag) and tin (Sn). A comparison between the experimental and theoretical values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>μ</mi><mo>/</mo><mi>ρ</mi></mrow></semantics></math></inline-formula> revealed that the experimental values were lower than the theoretical calculations. The relative differences between the theoretical and experimental values were found to decrease with increasing photon energy. The lowest percentage difference between the experimental and theoretical values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>μ</mi><mo>/</mo><mi>ρ</mi></mrow></semantics></math></inline-formula> was between −6.17% and −9.76% and was obtained at a photon energy of 25.29 keV. Sample 316L showed the highest value of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>μ</mi><mo>/</mo><mi>ρ</mi></mrow></semantics></math></inline-formula> at the energies 21.20, 22.19 and 25.29 keV. In addition, the measured results of Z<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mi>e</mi><mi>f</mi><mi>f</mi></mrow></msub></semantics></math></inline-formula> and N<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mi>e</mi><mi>f</mi><mi>f</mi></mrow></msub></semantics></math></inline-formula> for all samples behaved similarly in the given energy range and were found to be in good agreement with the calculations. The equivalent atomic number (Z<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mi>e</mi><mi>f</mi><mi>f</mi></mrow></msub></semantics></math></inline-formula>) of the investigated stainless-steel samples was calculated using the interpolation method to compare the samples at the same source energy. The 316L stainless steel had higher values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>μ</mi><mo>/</mo><mi>ρ</mi></mrow></semantics></math></inline-formula>, Z<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mi>e</mi><mi>f</mi><mi>f</mi></mrow></msub></semantics></math></inline-formula> and Z<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mi>e</mi><mi>q</mi></mrow></msub></semantics></math></inline-formula> and lower values of HVL compared with the other samples. Therefore, it is concluded that the 316L sample is more effective in absorbing gamma radiation.https://www.mdpi.com/1996-1944/14/22/6873surgical stainless steelmass attenuation coefficientWinXCOMhalf-value layerX-ray fluorescence
spellingShingle Mohammad Marashdeh
Ibrahim F. Al-Hamarneh
Evaluation of Gamma Radiation Properties of Four Types of Surgical Stainless Steel in the Energy Range of 17.50–25.29 keV
Materials
surgical stainless steel
mass attenuation coefficient
WinXCOM
half-value layer
X-ray fluorescence
title Evaluation of Gamma Radiation Properties of Four Types of Surgical Stainless Steel in the Energy Range of 17.50–25.29 keV
title_full Evaluation of Gamma Radiation Properties of Four Types of Surgical Stainless Steel in the Energy Range of 17.50–25.29 keV
title_fullStr Evaluation of Gamma Radiation Properties of Four Types of Surgical Stainless Steel in the Energy Range of 17.50–25.29 keV
title_full_unstemmed Evaluation of Gamma Radiation Properties of Four Types of Surgical Stainless Steel in the Energy Range of 17.50–25.29 keV
title_short Evaluation of Gamma Radiation Properties of Four Types of Surgical Stainless Steel in the Energy Range of 17.50–25.29 keV
title_sort evaluation of gamma radiation properties of four types of surgical stainless steel in the energy range of 17 50 25 29 kev
topic surgical stainless steel
mass attenuation coefficient
WinXCOM
half-value layer
X-ray fluorescence
url https://www.mdpi.com/1996-1944/14/22/6873
work_keys_str_mv AT mohammadmarashdeh evaluationofgammaradiationpropertiesoffourtypesofsurgicalstainlesssteelintheenergyrangeof17502529kev
AT ibrahimfalhamarneh evaluationofgammaradiationpropertiesoffourtypesofsurgicalstainlesssteelintheenergyrangeof17502529kev