Evaluation of Gamma Radiation Properties of Four Types of Surgical Stainless Steel in the Energy Range of 17.50–25.29 keV
In this study, the gamma radiation properties of four types of surgical-grade stainless steel (304, 304L, 316 and 316L) were investigated. The effective atomic number Z<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics>&...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-11-01
|
Series: | Materials |
Subjects: | |
Online Access: | https://www.mdpi.com/1996-1944/14/22/6873 |
_version_ | 1797509583549235200 |
---|---|
author | Mohammad Marashdeh Ibrahim F. Al-Hamarneh |
author_facet | Mohammad Marashdeh Ibrahim F. Al-Hamarneh |
author_sort | Mohammad Marashdeh |
collection | DOAJ |
description | In this study, the gamma radiation properties of four types of surgical-grade stainless steel (304, 304L, 316 and 316L) were investigated. The effective atomic number Z<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mi>e</mi><mi>f</mi><mi>f</mi></mrow></msub></semantics></math></inline-formula>, effective electron density N<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mi>e</mi><mi>f</mi><mi>f</mi></mrow></msub></semantics></math></inline-formula> and half-value layer (HVL) of four types of surgical-grade stainless steel were determined via the mass attenuation coefficient <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>μ</mi><mo>/</mo><mi>ρ</mi><mo>)</mo></mrow></semantics></math></inline-formula>. The <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>μ</mi><mo>/</mo><mi>ρ</mi></mrow></semantics></math></inline-formula> coefficients were determined experimentally using an X-ray fluorescence (XRF) technique and theoretically via the WinXCOM program. The K<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mi>α</mi><mn>1</mn></mrow></msub></semantics></math></inline-formula> of XRF photons in the energy range between 17.50 and 25.29 keV was used from pure metal plates of molybdenum (Mo), palladium (Pd), silver (Ag) and tin (Sn). A comparison between the experimental and theoretical values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>μ</mi><mo>/</mo><mi>ρ</mi></mrow></semantics></math></inline-formula> revealed that the experimental values were lower than the theoretical calculations. The relative differences between the theoretical and experimental values were found to decrease with increasing photon energy. The lowest percentage difference between the experimental and theoretical values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>μ</mi><mo>/</mo><mi>ρ</mi></mrow></semantics></math></inline-formula> was between −6.17% and −9.76% and was obtained at a photon energy of 25.29 keV. Sample 316L showed the highest value of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>μ</mi><mo>/</mo><mi>ρ</mi></mrow></semantics></math></inline-formula> at the energies 21.20, 22.19 and 25.29 keV. In addition, the measured results of Z<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mi>e</mi><mi>f</mi><mi>f</mi></mrow></msub></semantics></math></inline-formula> and N<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mi>e</mi><mi>f</mi><mi>f</mi></mrow></msub></semantics></math></inline-formula> for all samples behaved similarly in the given energy range and were found to be in good agreement with the calculations. The equivalent atomic number (Z<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mi>e</mi><mi>f</mi><mi>f</mi></mrow></msub></semantics></math></inline-formula>) of the investigated stainless-steel samples was calculated using the interpolation method to compare the samples at the same source energy. The 316L stainless steel had higher values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>μ</mi><mo>/</mo><mi>ρ</mi></mrow></semantics></math></inline-formula>, Z<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mi>e</mi><mi>f</mi><mi>f</mi></mrow></msub></semantics></math></inline-formula> and Z<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mi>e</mi><mi>q</mi></mrow></msub></semantics></math></inline-formula> and lower values of HVL compared with the other samples. Therefore, it is concluded that the 316L sample is more effective in absorbing gamma radiation. |
first_indexed | 2024-03-10T05:19:55Z |
format | Article |
id | doaj.art-9dfd0714cb2449338b8de119c7cdd8ba |
institution | Directory Open Access Journal |
issn | 1996-1944 |
language | English |
last_indexed | 2024-03-10T05:19:55Z |
publishDate | 2021-11-01 |
publisher | MDPI AG |
record_format | Article |
series | Materials |
spelling | doaj.art-9dfd0714cb2449338b8de119c7cdd8ba2023-11-23T00:10:07ZengMDPI AGMaterials1996-19442021-11-011422687310.3390/ma14226873Evaluation of Gamma Radiation Properties of Four Types of Surgical Stainless Steel in the Energy Range of 17.50–25.29 keVMohammad Marashdeh0Ibrahim F. Al-Hamarneh1Department of Physics, College of Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 90950, Riyadh 11623, Saudi ArabiaDepartment of Physics, Faculty of Science, Al-Balqa Applied University, Al-Salt 19117, JordanIn this study, the gamma radiation properties of four types of surgical-grade stainless steel (304, 304L, 316 and 316L) were investigated. The effective atomic number Z<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mi>e</mi><mi>f</mi><mi>f</mi></mrow></msub></semantics></math></inline-formula>, effective electron density N<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mi>e</mi><mi>f</mi><mi>f</mi></mrow></msub></semantics></math></inline-formula> and half-value layer (HVL) of four types of surgical-grade stainless steel were determined via the mass attenuation coefficient <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>μ</mi><mo>/</mo><mi>ρ</mi><mo>)</mo></mrow></semantics></math></inline-formula>. The <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>μ</mi><mo>/</mo><mi>ρ</mi></mrow></semantics></math></inline-formula> coefficients were determined experimentally using an X-ray fluorescence (XRF) technique and theoretically via the WinXCOM program. The K<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mi>α</mi><mn>1</mn></mrow></msub></semantics></math></inline-formula> of XRF photons in the energy range between 17.50 and 25.29 keV was used from pure metal plates of molybdenum (Mo), palladium (Pd), silver (Ag) and tin (Sn). A comparison between the experimental and theoretical values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>μ</mi><mo>/</mo><mi>ρ</mi></mrow></semantics></math></inline-formula> revealed that the experimental values were lower than the theoretical calculations. The relative differences between the theoretical and experimental values were found to decrease with increasing photon energy. The lowest percentage difference between the experimental and theoretical values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>μ</mi><mo>/</mo><mi>ρ</mi></mrow></semantics></math></inline-formula> was between −6.17% and −9.76% and was obtained at a photon energy of 25.29 keV. Sample 316L showed the highest value of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>μ</mi><mo>/</mo><mi>ρ</mi></mrow></semantics></math></inline-formula> at the energies 21.20, 22.19 and 25.29 keV. In addition, the measured results of Z<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mi>e</mi><mi>f</mi><mi>f</mi></mrow></msub></semantics></math></inline-formula> and N<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mi>e</mi><mi>f</mi><mi>f</mi></mrow></msub></semantics></math></inline-formula> for all samples behaved similarly in the given energy range and were found to be in good agreement with the calculations. The equivalent atomic number (Z<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mi>e</mi><mi>f</mi><mi>f</mi></mrow></msub></semantics></math></inline-formula>) of the investigated stainless-steel samples was calculated using the interpolation method to compare the samples at the same source energy. The 316L stainless steel had higher values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>μ</mi><mo>/</mo><mi>ρ</mi></mrow></semantics></math></inline-formula>, Z<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mi>e</mi><mi>f</mi><mi>f</mi></mrow></msub></semantics></math></inline-formula> and Z<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mi>e</mi><mi>q</mi></mrow></msub></semantics></math></inline-formula> and lower values of HVL compared with the other samples. Therefore, it is concluded that the 316L sample is more effective in absorbing gamma radiation.https://www.mdpi.com/1996-1944/14/22/6873surgical stainless steelmass attenuation coefficientWinXCOMhalf-value layerX-ray fluorescence |
spellingShingle | Mohammad Marashdeh Ibrahim F. Al-Hamarneh Evaluation of Gamma Radiation Properties of Four Types of Surgical Stainless Steel in the Energy Range of 17.50–25.29 keV Materials surgical stainless steel mass attenuation coefficient WinXCOM half-value layer X-ray fluorescence |
title | Evaluation of Gamma Radiation Properties of Four Types of Surgical Stainless Steel in the Energy Range of 17.50–25.29 keV |
title_full | Evaluation of Gamma Radiation Properties of Four Types of Surgical Stainless Steel in the Energy Range of 17.50–25.29 keV |
title_fullStr | Evaluation of Gamma Radiation Properties of Four Types of Surgical Stainless Steel in the Energy Range of 17.50–25.29 keV |
title_full_unstemmed | Evaluation of Gamma Radiation Properties of Four Types of Surgical Stainless Steel in the Energy Range of 17.50–25.29 keV |
title_short | Evaluation of Gamma Radiation Properties of Four Types of Surgical Stainless Steel in the Energy Range of 17.50–25.29 keV |
title_sort | evaluation of gamma radiation properties of four types of surgical stainless steel in the energy range of 17 50 25 29 kev |
topic | surgical stainless steel mass attenuation coefficient WinXCOM half-value layer X-ray fluorescence |
url | https://www.mdpi.com/1996-1944/14/22/6873 |
work_keys_str_mv | AT mohammadmarashdeh evaluationofgammaradiationpropertiesoffourtypesofsurgicalstainlesssteelintheenergyrangeof17502529kev AT ibrahimfalhamarneh evaluationofgammaradiationpropertiesoffourtypesofsurgicalstainlesssteelintheenergyrangeof17502529kev |