Co-benefits and Trade-Offs From Agro-Food System Redesign for Circularity: A Case Study With the FAN Agent-Based Model

Realizing more sustainable food, feed, and bioenergy systems will require interventions such as increased recycling of nutrients and coordination of biomass flows among farms. Innovative tools to explore the co-benefits and trade-offs of improving flow circularity in agro-food systems at different s...

Full description

Bibliographic Details
Main Authors: Hugo Fernandez-Mena, Graham K. MacDonald, Sylvain Pellerin, Thomas Nesme
Format: Article
Language:English
Published: Frontiers Media S.A. 2020-04-01
Series:Frontiers in Sustainable Food Systems
Subjects:
Online Access:https://www.frontiersin.org/article/10.3389/fsufs.2020.00041/full
_version_ 1818287744980353024
author Hugo Fernandez-Mena
Hugo Fernandez-Mena
Hugo Fernandez-Mena
Hugo Fernandez-Mena
Graham K. MacDonald
Sylvain Pellerin
Thomas Nesme
author_facet Hugo Fernandez-Mena
Hugo Fernandez-Mena
Hugo Fernandez-Mena
Hugo Fernandez-Mena
Graham K. MacDonald
Sylvain Pellerin
Thomas Nesme
author_sort Hugo Fernandez-Mena
collection DOAJ
description Realizing more sustainable food, feed, and bioenergy systems will require interventions such as increased recycling of nutrients and coordination of biomass flows among farms. Innovative tools to explore the co-benefits and trade-offs of improving flow circularity in agro-food systems at different scales are needed to better understand the efficacy of these sustainability solutions. Here, we applied the FAN (“Flows in Agro-food Networks”) agent-based model to simulate contrasting scenarios of material flows locally in a small farming region of France. These scenarios aim to enhance: (1) best management practices at the farm scale; (2) organic material recycling and biogas production collectively across the agricultural landscape; and (3) system redesign toward complete local circularity through crop and livestock symbiosis, fewer livestock, and elimination of external inputs. Scenario simulation outcomes are assessed in terms of their degree of circularity and food production. We find that best management practices at the farm scale and collective solutions for recycling (organic fertilization and anaerobic digestion) substantially improved the degree of circularity by tightening the local nitrogen (N) cycle without affecting food production. Among other co-benefits, changes in farm rotations to feed livestock locally increased the degree of circularity without appreciably impacting food production. The maximum circularity scenario showed considerable potential to mitigate greenhouse gas (GHG) emissions, however, they involved large trade-offs with food production that were even more pronounced with fewer livestock animals. Although regulating livestock numbers combined with eliminating chemical fertilizers was the most effective at mitigating GHG emissions, when applied simultaneously it substantially impacted food and bioenergy production. Such trade-offs for soil fertility demonstrate the importance of coupling crops and livestock for reaching self-sufficient circular systems. Our study illustrates how the FAN agent-based model can be applied to account for multiple types of interactions involved in transitions toward circularity in local agro-food systems, including the potential for co-benefits, and unintended consequences of interventions.
first_indexed 2024-12-13T01:45:22Z
format Article
id doaj.art-9e03bdd526cf4e29a47de959d3c84f5d
institution Directory Open Access Journal
issn 2571-581X
language English
last_indexed 2024-12-13T01:45:22Z
publishDate 2020-04-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Sustainable Food Systems
spelling doaj.art-9e03bdd526cf4e29a47de959d3c84f5d2022-12-22T00:03:38ZengFrontiers Media S.A.Frontiers in Sustainable Food Systems2571-581X2020-04-01410.3389/fsufs.2020.00041531421Co-benefits and Trade-Offs From Agro-Food System Redesign for Circularity: A Case Study With the FAN Agent-Based ModelHugo Fernandez-Mena0Hugo Fernandez-Mena1Hugo Fernandez-Mena2Hugo Fernandez-Mena3Graham K. MacDonald4Sylvain Pellerin5Thomas Nesme6INRAE, UMR ISPA 1391, Bordeaux, FranceBordeaux Sciences Agro, University of Bordeaux, UMR ISPA 1391, Bordeaux, FranceDepartment of Geography, McGill University, Montreal, QC, CanadaMontpellier SupAgro—Institut Agro, University of Montpellier, UMR ABSys, Montpellier, FranceDepartment of Geography, McGill University, Montreal, QC, CanadaINRAE, UMR ISPA 1391, Bordeaux, FranceBordeaux Sciences Agro, University of Bordeaux, UMR ISPA 1391, Bordeaux, FranceRealizing more sustainable food, feed, and bioenergy systems will require interventions such as increased recycling of nutrients and coordination of biomass flows among farms. Innovative tools to explore the co-benefits and trade-offs of improving flow circularity in agro-food systems at different scales are needed to better understand the efficacy of these sustainability solutions. Here, we applied the FAN (“Flows in Agro-food Networks”) agent-based model to simulate contrasting scenarios of material flows locally in a small farming region of France. These scenarios aim to enhance: (1) best management practices at the farm scale; (2) organic material recycling and biogas production collectively across the agricultural landscape; and (3) system redesign toward complete local circularity through crop and livestock symbiosis, fewer livestock, and elimination of external inputs. Scenario simulation outcomes are assessed in terms of their degree of circularity and food production. We find that best management practices at the farm scale and collective solutions for recycling (organic fertilization and anaerobic digestion) substantially improved the degree of circularity by tightening the local nitrogen (N) cycle without affecting food production. Among other co-benefits, changes in farm rotations to feed livestock locally increased the degree of circularity without appreciably impacting food production. The maximum circularity scenario showed considerable potential to mitigate greenhouse gas (GHG) emissions, however, they involved large trade-offs with food production that were even more pronounced with fewer livestock animals. Although regulating livestock numbers combined with eliminating chemical fertilizers was the most effective at mitigating GHG emissions, when applied simultaneously it substantially impacted food and bioenergy production. Such trade-offs for soil fertility demonstrate the importance of coupling crops and livestock for reaching self-sufficient circular systems. Our study illustrates how the FAN agent-based model can be applied to account for multiple types of interactions involved in transitions toward circularity in local agro-food systems, including the potential for co-benefits, and unintended consequences of interventions.https://www.frontiersin.org/article/10.3389/fsufs.2020.00041/fullmaterial flowscircular economyrecyclingbioeconomyagroecology
spellingShingle Hugo Fernandez-Mena
Hugo Fernandez-Mena
Hugo Fernandez-Mena
Hugo Fernandez-Mena
Graham K. MacDonald
Sylvain Pellerin
Thomas Nesme
Co-benefits and Trade-Offs From Agro-Food System Redesign for Circularity: A Case Study With the FAN Agent-Based Model
Frontiers in Sustainable Food Systems
material flows
circular economy
recycling
bioeconomy
agroecology
title Co-benefits and Trade-Offs From Agro-Food System Redesign for Circularity: A Case Study With the FAN Agent-Based Model
title_full Co-benefits and Trade-Offs From Agro-Food System Redesign for Circularity: A Case Study With the FAN Agent-Based Model
title_fullStr Co-benefits and Trade-Offs From Agro-Food System Redesign for Circularity: A Case Study With the FAN Agent-Based Model
title_full_unstemmed Co-benefits and Trade-Offs From Agro-Food System Redesign for Circularity: A Case Study With the FAN Agent-Based Model
title_short Co-benefits and Trade-Offs From Agro-Food System Redesign for Circularity: A Case Study With the FAN Agent-Based Model
title_sort co benefits and trade offs from agro food system redesign for circularity a case study with the fan agent based model
topic material flows
circular economy
recycling
bioeconomy
agroecology
url https://www.frontiersin.org/article/10.3389/fsufs.2020.00041/full
work_keys_str_mv AT hugofernandezmena cobenefitsandtradeoffsfromagrofoodsystemredesignforcircularityacasestudywiththefanagentbasedmodel
AT hugofernandezmena cobenefitsandtradeoffsfromagrofoodsystemredesignforcircularityacasestudywiththefanagentbasedmodel
AT hugofernandezmena cobenefitsandtradeoffsfromagrofoodsystemredesignforcircularityacasestudywiththefanagentbasedmodel
AT hugofernandezmena cobenefitsandtradeoffsfromagrofoodsystemredesignforcircularityacasestudywiththefanagentbasedmodel
AT grahamkmacdonald cobenefitsandtradeoffsfromagrofoodsystemredesignforcircularityacasestudywiththefanagentbasedmodel
AT sylvainpellerin cobenefitsandtradeoffsfromagrofoodsystemredesignforcircularityacasestudywiththefanagentbasedmodel
AT thomasnesme cobenefitsandtradeoffsfromagrofoodsystemredesignforcircularityacasestudywiththefanagentbasedmodel