Iteration for solving non- differentiable operator and the analysis for its convergence(求解不可导算子的迭代法及其收敛性分析)
主要研究了非线性算子不可导情形下Newton迭代型的收敛性.通过将不可导算子F分解为可导部分H和不可导部分G,借助Hernández采用的修正迭代公式,分析了Newton型迭代的收敛性.相比Hernández的结果,本定理所需条件较弱,并且具有较好的误差估计公式....
Main Authors: | , , |
---|---|
Format: | Article |
Language: | zho |
Published: |
Zhejiang University Press
2010-01-01
|
Series: | Zhejiang Daxue xuebao. Lixue ban |
Subjects: | |
Online Access: | https://doi.org/10.3785/j.issn.1008-9497.2010.01.009 |
_version_ | 1797236165282103296 |
---|---|
author | JIAYun-tao(贾云涛) SUNFang-yu(孙方裕) CUIDe-zao(崔德灶) |
author_facet | JIAYun-tao(贾云涛) SUNFang-yu(孙方裕) CUIDe-zao(崔德灶) |
author_sort | JIAYun-tao(贾云涛) |
collection | DOAJ |
description | 主要研究了非线性算子不可导情形下Newton迭代型的收敛性.通过将不可导算子F分解为可导部分H和不可导部分G,借助Hernández采用的修正迭代公式,分析了Newton型迭代的收敛性.相比Hernández的结果,本定理所需条件较弱,并且具有较好的误差估计公式. |
first_indexed | 2024-04-24T16:59:31Z |
format | Article |
id | doaj.art-9e05ff4b81b546739ddbe8f7ec9124c8 |
institution | Directory Open Access Journal |
issn | 1008-9497 |
language | zho |
last_indexed | 2024-04-24T16:59:31Z |
publishDate | 2010-01-01 |
publisher | Zhejiang University Press |
record_format | Article |
series | Zhejiang Daxue xuebao. Lixue ban |
spelling | doaj.art-9e05ff4b81b546739ddbe8f7ec9124c82024-03-29T01:58:27ZzhoZhejiang University PressZhejiang Daxue xuebao. Lixue ban1008-94972010-01-01371384110.3785/j.issn.1008-9497.2010.01.009Iteration for solving non- differentiable operator and the analysis for its convergence(求解不可导算子的迭代法及其收敛性分析)JIAYun-tao(贾云涛)0SUNFang-yu(孙方裕)1CUIDe-zao(崔德灶)2 1.Zhuhai Campus, Beijing Institute of Technology, Zhuhai 519085, Guangdong Province, China( 1.北京理工大学珠海学院,广东 珠海 519085) 2.Department of Mathematics, Zhejiang University, Hangzhou 310027, China( 2.浙江大学数学系,浙江 杭州 310027) 1.Zhuhai Campus, Beijing Institute of Technology, Zhuhai 519085, Guangdong Province, China( 1.北京理工大学珠海学院,广东 珠海 519085)主要研究了非线性算子不可导情形下Newton迭代型的收敛性.通过将不可导算子F分解为可导部分H和不可导部分G,借助Hernández采用的修正迭代公式,分析了Newton型迭代的收敛性.相比Hernández的结果,本定理所需条件较弱,并且具有较好的误差估计公式.https://doi.org/10.3785/j.issn.1008-9497.2010.01.009newton迭代banach空间不可导算子 |
spellingShingle | JIAYun-tao(贾云涛) SUNFang-yu(孙方裕) CUIDe-zao(崔德灶) Iteration for solving non- differentiable operator and the analysis for its convergence(求解不可导算子的迭代法及其收敛性分析) Zhejiang Daxue xuebao. Lixue ban newton迭代 banach空间 不可导算子 |
title | Iteration for solving non- differentiable operator and the analysis for its convergence(求解不可导算子的迭代法及其收敛性分析) |
title_full | Iteration for solving non- differentiable operator and the analysis for its convergence(求解不可导算子的迭代法及其收敛性分析) |
title_fullStr | Iteration for solving non- differentiable operator and the analysis for its convergence(求解不可导算子的迭代法及其收敛性分析) |
title_full_unstemmed | Iteration for solving non- differentiable operator and the analysis for its convergence(求解不可导算子的迭代法及其收敛性分析) |
title_short | Iteration for solving non- differentiable operator and the analysis for its convergence(求解不可导算子的迭代法及其收敛性分析) |
title_sort | iteration for solving non differentiable operator and the analysis for its convergence 求解不可导算子的迭代法及其收敛性分析 |
topic | newton迭代 banach空间 不可导算子 |
url | https://doi.org/10.3785/j.issn.1008-9497.2010.01.009 |
work_keys_str_mv | AT jiayuntaojiǎyúntāo iterationforsolvingnondifferentiableoperatorandtheanalysisforitsconvergenceqiújiěbùkědǎosuànzidediédàifǎjíqíshōuliǎnxìngfēnxī AT sunfangyusūnfāngyù iterationforsolvingnondifferentiableoperatorandtheanalysisforitsconvergenceqiújiěbùkědǎosuànzidediédàifǎjíqíshōuliǎnxìngfēnxī AT cuidezaocuīdézào iterationforsolvingnondifferentiableoperatorandtheanalysisforitsconvergenceqiújiěbùkědǎosuànzidediédàifǎjíqíshōuliǎnxìngfēnxī |