A High-Throughput Photon Processing Technique for Range Extension of SPAD-Based LiDAR Receivers

There has recently been a keen interest in developing Light Detection and Ranging (LiDAR) systems using Single Photon Avalanche Diode (SPAD) sensors. This has led to a variety of implementations in pixel combining techniques and Time to Digital Converter (TDC) architectures for such sensors. This pa...

Full description

Bibliographic Details
Main Authors: Sarrah M. Patanwala, Istvan Gyongy, Hanning Mai, Andreas Abmann, Neale A. W. Dutton, Bruce R. Rae, Robert K. Henderson
Format: Article
Language:English
Published: IEEE 2022-01-01
Series:IEEE Open Journal of the Solid-State Circuits Society
Subjects:
Online Access:https://ieeexplore.ieee.org/document/9566373/
Description
Summary:There has recently been a keen interest in developing Light Detection and Ranging (LiDAR) systems using Single Photon Avalanche Diode (SPAD) sensors. This has led to a variety of implementations in pixel combining techniques and Time to Digital Converter (TDC) architectures for such sensors. This paper presents a comparison of these approaches and demonstrates a technique capable of extending the range of LiDAR systems with improved resilience to background conditions. A LiDAR system emulator using a reconfigurable SPAD array and FPGA interface is used to compare these different techniques. A Monte Carlo simulation model leveraging synthetic 3D data is presented to visualize the sensor performance on realistic automotive LiDAR scenes.
ISSN:2644-1349