Study on Dynamic Fermentation of Oat Silage Assisted by Exogenous Fibrolytic Enzymes
Based on the low content of water-soluble carbohydrate (WSC) and lactic acid bacteria (LAB) attachment in oat raw materials, we assumed that the neutral detergent fiber (NDF) content of oat can be reduced by adding cellulase or xylanase. The concentration of metabolizable sugars will be increased, w...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-12-01
|
Series: | Plants |
Subjects: | |
Online Access: | https://www.mdpi.com/2223-7747/13/1/6 |
_version_ | 1797358341836505088 |
---|---|
author | Wei Liu Shuai Du Lin Sun Zhijun Wang Gentu Ge Yushan Jia |
author_facet | Wei Liu Shuai Du Lin Sun Zhijun Wang Gentu Ge Yushan Jia |
author_sort | Wei Liu |
collection | DOAJ |
description | Based on the low content of water-soluble carbohydrate (WSC) and lactic acid bacteria (LAB) attachment in oat raw materials, we assumed that the neutral detergent fiber (NDF) content of oat can be reduced by adding cellulase or xylanase. The concentration of metabolizable sugars will be increased, which will assist the oat’s bacterial community in fermentation and obtain a better quality of oat silage. After wilting the oat, it was treated as follows: (1) distributed water (CK); (2) silages inoculated with xylanase (X); and (3) silages inoculated with cellulase (C), ensiling for 3, 7, 14, 30, and 60 days. Cellulase and xylanase treatments both alter the fermentation and nutritional quality of ensiled oat, resulting in lower NDF, acid detergent fiber (ADF), cellulose, and hemicellulose contents, increased lactic acid and acetic acid contents, and a significant decrease in ensiling environment pH. The bacterial community undergoes significant changes with cellulase and xylanase treatments, with a significant increase in <i>Lactobacillus</i> abundance in the C_14, X_30, C_30, X_60, and C_60 treatment groups, while <i>Weissella</i> abundance gradually decreases with longer ensiling times. Two exogenous fibrolytic enzymes also alter the bacterial diversity of ensiled oat, with different bacterial species and abundances observed in different treatment groups. Ensiled oat treated with cellulase and xylanase experiences significant changes in its own bacterial community, particularly in the abundance of <i>Lactobacillus</i>. These changes result in improved fermentation and nutritional quality of oat, but the higher metabolism levels observed after 60 days of ensiling with cellulase treatment may lead to energy loss. |
first_indexed | 2024-03-08T14:59:32Z |
format | Article |
id | doaj.art-9e167efe84e14ab8b8d9b44b44380e8a |
institution | Directory Open Access Journal |
issn | 2223-7747 |
language | English |
last_indexed | 2024-03-08T14:59:32Z |
publishDate | 2023-12-01 |
publisher | MDPI AG |
record_format | Article |
series | Plants |
spelling | doaj.art-9e167efe84e14ab8b8d9b44b44380e8a2024-01-10T15:05:53ZengMDPI AGPlants2223-77472023-12-01131610.3390/plants13010006Study on Dynamic Fermentation of Oat Silage Assisted by Exogenous Fibrolytic EnzymesWei Liu0Shuai Du1Lin Sun2Zhijun Wang3Gentu Ge4Yushan Jia5Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010019, ChinaKey Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010019, ChinaInner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010031, ChinaKey Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010019, ChinaKey Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010019, ChinaKey Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010019, ChinaBased on the low content of water-soluble carbohydrate (WSC) and lactic acid bacteria (LAB) attachment in oat raw materials, we assumed that the neutral detergent fiber (NDF) content of oat can be reduced by adding cellulase or xylanase. The concentration of metabolizable sugars will be increased, which will assist the oat’s bacterial community in fermentation and obtain a better quality of oat silage. After wilting the oat, it was treated as follows: (1) distributed water (CK); (2) silages inoculated with xylanase (X); and (3) silages inoculated with cellulase (C), ensiling for 3, 7, 14, 30, and 60 days. Cellulase and xylanase treatments both alter the fermentation and nutritional quality of ensiled oat, resulting in lower NDF, acid detergent fiber (ADF), cellulose, and hemicellulose contents, increased lactic acid and acetic acid contents, and a significant decrease in ensiling environment pH. The bacterial community undergoes significant changes with cellulase and xylanase treatments, with a significant increase in <i>Lactobacillus</i> abundance in the C_14, X_30, C_30, X_60, and C_60 treatment groups, while <i>Weissella</i> abundance gradually decreases with longer ensiling times. Two exogenous fibrolytic enzymes also alter the bacterial diversity of ensiled oat, with different bacterial species and abundances observed in different treatment groups. Ensiled oat treated with cellulase and xylanase experiences significant changes in its own bacterial community, particularly in the abundance of <i>Lactobacillus</i>. These changes result in improved fermentation and nutritional quality of oat, but the higher metabolism levels observed after 60 days of ensiling with cellulase treatment may lead to energy loss.https://www.mdpi.com/2223-7747/13/1/6oatsilagexylanasecellulasebacteria community |
spellingShingle | Wei Liu Shuai Du Lin Sun Zhijun Wang Gentu Ge Yushan Jia Study on Dynamic Fermentation of Oat Silage Assisted by Exogenous Fibrolytic Enzymes Plants oat silage xylanase cellulase bacteria community |
title | Study on Dynamic Fermentation of Oat Silage Assisted by Exogenous Fibrolytic Enzymes |
title_full | Study on Dynamic Fermentation of Oat Silage Assisted by Exogenous Fibrolytic Enzymes |
title_fullStr | Study on Dynamic Fermentation of Oat Silage Assisted by Exogenous Fibrolytic Enzymes |
title_full_unstemmed | Study on Dynamic Fermentation of Oat Silage Assisted by Exogenous Fibrolytic Enzymes |
title_short | Study on Dynamic Fermentation of Oat Silage Assisted by Exogenous Fibrolytic Enzymes |
title_sort | study on dynamic fermentation of oat silage assisted by exogenous fibrolytic enzymes |
topic | oat silage xylanase cellulase bacteria community |
url | https://www.mdpi.com/2223-7747/13/1/6 |
work_keys_str_mv | AT weiliu studyondynamicfermentationofoatsilageassistedbyexogenousfibrolyticenzymes AT shuaidu studyondynamicfermentationofoatsilageassistedbyexogenousfibrolyticenzymes AT linsun studyondynamicfermentationofoatsilageassistedbyexogenousfibrolyticenzymes AT zhijunwang studyondynamicfermentationofoatsilageassistedbyexogenousfibrolyticenzymes AT gentuge studyondynamicfermentationofoatsilageassistedbyexogenousfibrolyticenzymes AT yushanjia studyondynamicfermentationofoatsilageassistedbyexogenousfibrolyticenzymes |