_version_ 1797659127423434752
author Allison McCarn Deiana
Nhan Tran
Nhan Tran
Joshua Agar
Michaela Blott
Giuseppe Di Guglielmo
Javier Duarte
Philip Harris
Scott Hauck
Mia Liu
Mark S. Neubauer
Jennifer Ngadiuba
Seda Ogrenci-Memik
Maurizio Pierini
Thea Aarrestad
Steffen Bähr
Jürgen Becker
Anne-Sophie Berthold
Richard J. Bonventre
Tomás E. Müller Bravo
Markus Diefenthaler
Zhen Dong
Nick Fritzsche
Amir Gholami
Ekaterina Govorkova
Dongning Guo
Kyle J. Hazelwood
Christian Herwig
Babar Khan
Sehoon Kim
Thomas Klijnsma
Yaling Liu
Kin Ho Lo
Tri Nguyen
Gianantonio Pezzullo
Seyedramin Rasoulinezhad
Ryan A. Rivera
Kate Scholberg
Justin Selig
Sougata Sen
Dmitri Strukov
William Tang
Savannah Thais
Kai Lukas Unger
Ricardo Vilalta
Belina von Krosigk
Belina von Krosigk
Shen Wang
Thomas K. Warburton
author_facet Allison McCarn Deiana
Nhan Tran
Nhan Tran
Joshua Agar
Michaela Blott
Giuseppe Di Guglielmo
Javier Duarte
Philip Harris
Scott Hauck
Mia Liu
Mark S. Neubauer
Jennifer Ngadiuba
Seda Ogrenci-Memik
Maurizio Pierini
Thea Aarrestad
Steffen Bähr
Jürgen Becker
Anne-Sophie Berthold
Richard J. Bonventre
Tomás E. Müller Bravo
Markus Diefenthaler
Zhen Dong
Nick Fritzsche
Amir Gholami
Ekaterina Govorkova
Dongning Guo
Kyle J. Hazelwood
Christian Herwig
Babar Khan
Sehoon Kim
Thomas Klijnsma
Yaling Liu
Kin Ho Lo
Tri Nguyen
Gianantonio Pezzullo
Seyedramin Rasoulinezhad
Ryan A. Rivera
Kate Scholberg
Justin Selig
Sougata Sen
Dmitri Strukov
William Tang
Savannah Thais
Kai Lukas Unger
Ricardo Vilalta
Belina von Krosigk
Belina von Krosigk
Shen Wang
Thomas K. Warburton
author_sort Allison McCarn Deiana
collection DOAJ
description In this community review report, we discuss applications and techniques for fast machine learning (ML) in science—the concept of integrating powerful ML methods into the real-time experimental data processing loop to accelerate scientific discovery. The material for the report builds on two workshops held by the Fast ML for Science community and covers three main areas: applications for fast ML across a number of scientific domains; techniques for training and implementing performant and resource-efficient ML algorithms; and computing architectures, platforms, and technologies for deploying these algorithms. We also present overlapping challenges across the multiple scientific domains where common solutions can be found. This community report is intended to give plenty of examples and inspiration for scientific discovery through integrated and accelerated ML solutions. This is followed by a high-level overview and organization of technical advances, including an abundance of pointers to source material, which can enable these breakthroughs.
first_indexed 2024-03-11T18:10:21Z
format Article
id doaj.art-9e1a26011d554b649834394385e92870
institution Directory Open Access Journal
issn 2624-909X
language English
last_indexed 2024-03-11T18:10:21Z
publishDate 2022-04-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Big Data
spelling doaj.art-9e1a26011d554b649834394385e928702023-10-16T15:21:41ZengFrontiers Media S.A.Frontiers in Big Data2624-909X2022-04-01510.3389/fdata.2022.787421787421Applications and Techniques for Fast Machine Learning in ScienceAllison McCarn Deiana0Nhan Tran1Nhan Tran2Joshua Agar3Michaela Blott4Giuseppe Di Guglielmo5Javier Duarte6Philip Harris7Scott Hauck8Mia Liu9Mark S. Neubauer10Jennifer Ngadiuba11Seda Ogrenci-Memik12Maurizio Pierini13Thea Aarrestad14Steffen Bähr15Jürgen Becker16Anne-Sophie Berthold17Richard J. Bonventre18Tomás E. Müller Bravo19Markus Diefenthaler20Zhen Dong21Nick Fritzsche22Amir Gholami23Ekaterina Govorkova24Dongning Guo25Kyle J. Hazelwood26Christian Herwig27Babar Khan28Sehoon Kim29Thomas Klijnsma30Yaling Liu31Kin Ho Lo32Tri Nguyen33Gianantonio Pezzullo34Seyedramin Rasoulinezhad35Ryan A. Rivera36Kate Scholberg37Justin Selig38Sougata Sen39Dmitri Strukov40William Tang41Savannah Thais42Kai Lukas Unger43Ricardo Vilalta44Belina von Krosigk45Belina von Krosigk46Shen Wang47Thomas K. Warburton48Department of Physics, Southern Methodist University, Dallas, TX, United StatesFermi National Accelerator Laboratory, Batavia, IL, United StatesDepartment of Electrical and Computer Engineering, Northwestern University, Evanston, IL, United StatesDepartment of Materials Science and Engineering, Lehigh University, Bethlehem, PA, United StatesXilinx Research, Dublin, IrelandDepartment of Computer Science, Columbia University, New York, NY, United StatesDepartment of Physics, University of California, San Diego, San Diego, CA, United StatesMassachusetts Institute of Technology, Cambridge, MA, United StatesDepartment of Electrical and Computer Engineering, University of Washington, Seattle, WA, United States0Department of Physics and Astronomy, Purdue University, West Lafayette, IN, United States1Department of Physics, University of Illinois Urbana-Champaign, Champaign, IL, United StatesFermi National Accelerator Laboratory, Batavia, IL, United StatesDepartment of Electrical and Computer Engineering, Northwestern University, Evanston, IL, United States2European Organization for Nuclear Research (CERN), Meyrin, Switzerland2European Organization for Nuclear Research (CERN), Meyrin, Switzerland3Karlsruhe Institute of Technology, Karlsruhe, Germany3Karlsruhe Institute of Technology, Karlsruhe, Germany4Institute of Nuclear and Particle Physics, Technische Universität Dresden, Dresden, Germany5Lawrence Berkeley National Laboratory, Berkeley, CA, United States6Department of Physics and Astronomy, University of Southampton, Southampton, United Kingdom7Thomas Jefferson National Accelerator Facility, Newport News, VA, United States8Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, United States4Institute of Nuclear and Particle Physics, Technische Universität Dresden, Dresden, Germany8Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, United States2European Organization for Nuclear Research (CERN), Meyrin, SwitzerlandDepartment of Electrical and Computer Engineering, Northwestern University, Evanston, IL, United StatesFermi National Accelerator Laboratory, Batavia, IL, United StatesFermi National Accelerator Laboratory, Batavia, IL, United States9Department of Computer Science, Technical University Darmstadt, Darmstadt, Germany8Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, United StatesFermi National Accelerator Laboratory, Batavia, IL, United States0Department of Bioengineering, Lehigh University, Bethlehem, PA, United States1Department of Physics, University of Florida, Gainesville, FL, United StatesMassachusetts Institute of Technology, Cambridge, MA, United States2Department of Physics, Yale University, New Haven, CT, United States3Department of Engineering and IT, University of Sydney, Camperdown, NSW, AustraliaFermi National Accelerator Laboratory, Batavia, IL, United States4Department of Physics, Duke University, Durham, NC, United States5Cerebras Systems, Sunnyvale, CA, United States6Birla Institute of Technology and Science, Pilani, India7Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, CA, United States8Department of Physics, Princeton University, Princeton, NJ, United States8Department of Physics, Princeton University, Princeton, NJ, United States3Karlsruhe Institute of Technology, Karlsruhe, Germany9Department of Computer Science, University of Houston, Houston, TX, United States3Karlsruhe Institute of Technology, Karlsruhe, Germany0Department of Physics, Universität Hamburg, Hamburg, Germany1Department of Physics, University of Florida, Gainesville, FL, United States1Department of Physics and Astronomy, Iowa State University, Ames, IA, United StatesIn this community review report, we discuss applications and techniques for fast machine learning (ML) in science—the concept of integrating powerful ML methods into the real-time experimental data processing loop to accelerate scientific discovery. The material for the report builds on two workshops held by the Fast ML for Science community and covers three main areas: applications for fast ML across a number of scientific domains; techniques for training and implementing performant and resource-efficient ML algorithms; and computing architectures, platforms, and technologies for deploying these algorithms. We also present overlapping challenges across the multiple scientific domains where common solutions can be found. This community report is intended to give plenty of examples and inspiration for scientific discovery through integrated and accelerated ML solutions. This is followed by a high-level overview and organization of technical advances, including an abundance of pointers to source material, which can enable these breakthroughs.https://www.frontiersin.org/articles/10.3389/fdata.2022.787421/fullmachine learning for sciencebig dataparticle physicscodesigncoprocessorsheterogeneous computing
spellingShingle Allison McCarn Deiana
Nhan Tran
Nhan Tran
Joshua Agar
Michaela Blott
Giuseppe Di Guglielmo
Javier Duarte
Philip Harris
Scott Hauck
Mia Liu
Mark S. Neubauer
Jennifer Ngadiuba
Seda Ogrenci-Memik
Maurizio Pierini
Thea Aarrestad
Steffen Bähr
Jürgen Becker
Anne-Sophie Berthold
Richard J. Bonventre
Tomás E. Müller Bravo
Markus Diefenthaler
Zhen Dong
Nick Fritzsche
Amir Gholami
Ekaterina Govorkova
Dongning Guo
Kyle J. Hazelwood
Christian Herwig
Babar Khan
Sehoon Kim
Thomas Klijnsma
Yaling Liu
Kin Ho Lo
Tri Nguyen
Gianantonio Pezzullo
Seyedramin Rasoulinezhad
Ryan A. Rivera
Kate Scholberg
Justin Selig
Sougata Sen
Dmitri Strukov
William Tang
Savannah Thais
Kai Lukas Unger
Ricardo Vilalta
Belina von Krosigk
Belina von Krosigk
Shen Wang
Thomas K. Warburton
Applications and Techniques for Fast Machine Learning in Science
Frontiers in Big Data
machine learning for science
big data
particle physics
codesign
coprocessors
heterogeneous computing
title Applications and Techniques for Fast Machine Learning in Science
title_full Applications and Techniques for Fast Machine Learning in Science
title_fullStr Applications and Techniques for Fast Machine Learning in Science
title_full_unstemmed Applications and Techniques for Fast Machine Learning in Science
title_short Applications and Techniques for Fast Machine Learning in Science
title_sort applications and techniques for fast machine learning in science
topic machine learning for science
big data
particle physics
codesign
coprocessors
heterogeneous computing
url https://www.frontiersin.org/articles/10.3389/fdata.2022.787421/full
work_keys_str_mv AT allisonmccarndeiana applicationsandtechniquesforfastmachinelearninginscience
AT nhantran applicationsandtechniquesforfastmachinelearninginscience
AT nhantran applicationsandtechniquesforfastmachinelearninginscience
AT joshuaagar applicationsandtechniquesforfastmachinelearninginscience
AT michaelablott applicationsandtechniquesforfastmachinelearninginscience
AT giuseppediguglielmo applicationsandtechniquesforfastmachinelearninginscience
AT javierduarte applicationsandtechniquesforfastmachinelearninginscience
AT philipharris applicationsandtechniquesforfastmachinelearninginscience
AT scotthauck applicationsandtechniquesforfastmachinelearninginscience
AT mialiu applicationsandtechniquesforfastmachinelearninginscience
AT marksneubauer applicationsandtechniquesforfastmachinelearninginscience
AT jenniferngadiuba applicationsandtechniquesforfastmachinelearninginscience
AT sedaogrencimemik applicationsandtechniquesforfastmachinelearninginscience
AT mauriziopierini applicationsandtechniquesforfastmachinelearninginscience
AT theaaarrestad applicationsandtechniquesforfastmachinelearninginscience
AT steffenbahr applicationsandtechniquesforfastmachinelearninginscience
AT jurgenbecker applicationsandtechniquesforfastmachinelearninginscience
AT annesophieberthold applicationsandtechniquesforfastmachinelearninginscience
AT richardjbonventre applicationsandtechniquesforfastmachinelearninginscience
AT tomasemullerbravo applicationsandtechniquesforfastmachinelearninginscience
AT markusdiefenthaler applicationsandtechniquesforfastmachinelearninginscience
AT zhendong applicationsandtechniquesforfastmachinelearninginscience
AT nickfritzsche applicationsandtechniquesforfastmachinelearninginscience
AT amirgholami applicationsandtechniquesforfastmachinelearninginscience
AT ekaterinagovorkova applicationsandtechniquesforfastmachinelearninginscience
AT dongningguo applicationsandtechniquesforfastmachinelearninginscience
AT kylejhazelwood applicationsandtechniquesforfastmachinelearninginscience
AT christianherwig applicationsandtechniquesforfastmachinelearninginscience
AT babarkhan applicationsandtechniquesforfastmachinelearninginscience
AT sehoonkim applicationsandtechniquesforfastmachinelearninginscience
AT thomasklijnsma applicationsandtechniquesforfastmachinelearninginscience
AT yalingliu applicationsandtechniquesforfastmachinelearninginscience
AT kinholo applicationsandtechniquesforfastmachinelearninginscience
AT tringuyen applicationsandtechniquesforfastmachinelearninginscience
AT gianantoniopezzullo applicationsandtechniquesforfastmachinelearninginscience
AT seyedraminrasoulinezhad applicationsandtechniquesforfastmachinelearninginscience
AT ryanarivera applicationsandtechniquesforfastmachinelearninginscience
AT katescholberg applicationsandtechniquesforfastmachinelearninginscience
AT justinselig applicationsandtechniquesforfastmachinelearninginscience
AT sougatasen applicationsandtechniquesforfastmachinelearninginscience
AT dmitristrukov applicationsandtechniquesforfastmachinelearninginscience
AT williamtang applicationsandtechniquesforfastmachinelearninginscience
AT savannahthais applicationsandtechniquesforfastmachinelearninginscience
AT kailukasunger applicationsandtechniquesforfastmachinelearninginscience
AT ricardovilalta applicationsandtechniquesforfastmachinelearninginscience
AT belinavonkrosigk applicationsandtechniquesforfastmachinelearninginscience
AT belinavonkrosigk applicationsandtechniquesforfastmachinelearninginscience
AT shenwang applicationsandtechniquesforfastmachinelearninginscience
AT thomaskwarburton applicationsandtechniquesforfastmachinelearninginscience