K-stability of Fano varieties via admissible flags

We develop a general approach to prove K-stability of Fano varieties. The new theory is used to (a) prove the existence of Kähler-Einstein metrics on all smooth Fano hypersurfaces of Fano index two, (b) compute the stability thresholds for hypersurfaces at generalised Eckardt points and for cubic su...

Full description

Bibliographic Details
Main Authors: Hamid Abban, Ziquan Zhuang
Format: Article
Language:English
Published: Cambridge University Press 2022-01-01
Series:Forum of Mathematics, Pi
Subjects:
Online Access:https://www.cambridge.org/core/product/identifier/S2050508622000117/type/journal_article
_version_ 1811156250521501696
author Hamid Abban
Ziquan Zhuang
author_facet Hamid Abban
Ziquan Zhuang
author_sort Hamid Abban
collection DOAJ
description We develop a general approach to prove K-stability of Fano varieties. The new theory is used to (a) prove the existence of Kähler-Einstein metrics on all smooth Fano hypersurfaces of Fano index two, (b) compute the stability thresholds for hypersurfaces at generalised Eckardt points and for cubic surfaces at all points, and (c) provide a new algebraic proof of Tian’s criterion for K-stability, amongst other applications.
first_indexed 2024-04-10T04:48:29Z
format Article
id doaj.art-9e1b1c955e444acf9338b40d9143ec33
institution Directory Open Access Journal
issn 2050-5086
language English
last_indexed 2024-04-10T04:48:29Z
publishDate 2022-01-01
publisher Cambridge University Press
record_format Article
series Forum of Mathematics, Pi
spelling doaj.art-9e1b1c955e444acf9338b40d9143ec332023-03-09T12:34:22ZengCambridge University PressForum of Mathematics, Pi2050-50862022-01-011010.1017/fmp.2022.11K-stability of Fano varieties via admissible flagsHamid Abban0https://orcid.org/0000-0002-4260-3243Ziquan Zhuang1https://orcid.org/0000-0002-5466-5206Department of Mathematical Sciences, Loughborough University, Loughborough, LE11 3TU, UKDepartment of Mathematics, MIT, Cambridge, MA, 02139, USA; E-mail:We develop a general approach to prove K-stability of Fano varieties. The new theory is used to (a) prove the existence of Kähler-Einstein metrics on all smooth Fano hypersurfaces of Fano index two, (b) compute the stability thresholds for hypersurfaces at generalised Eckardt points and for cubic surfaces at all points, and (c) provide a new algebraic proof of Tian’s criterion for K-stability, amongst other applications.https://www.cambridge.org/core/product/identifier/S2050508622000117/type/journal_articleK-stabilityFano varieties14J4532Q20
spellingShingle Hamid Abban
Ziquan Zhuang
K-stability of Fano varieties via admissible flags
Forum of Mathematics, Pi
K-stability
Fano varieties
14J45
32Q20
title K-stability of Fano varieties via admissible flags
title_full K-stability of Fano varieties via admissible flags
title_fullStr K-stability of Fano varieties via admissible flags
title_full_unstemmed K-stability of Fano varieties via admissible flags
title_short K-stability of Fano varieties via admissible flags
title_sort k stability of fano varieties via admissible flags
topic K-stability
Fano varieties
14J45
32Q20
url https://www.cambridge.org/core/product/identifier/S2050508622000117/type/journal_article
work_keys_str_mv AT hamidabban kstabilityoffanovarietiesviaadmissibleflags
AT ziquanzhuang kstabilityoffanovarietiesviaadmissibleflags