Real-Time Embedded Vision System for Online Monitoring and Sorting of Citrus Fruits

Citrus fruits are the second most important crop worldwide. One of the most important tasks is sorting, which involves manually separating the fruit based on its degree of maturity, and in many cases, involves a task carried out manually by human operators. A machine vision-based citrus sorting syst...

Full description

Bibliographic Details
Main Authors: Marco Aurelio Nuño-Maganda, Ismael Antonio Dávila-Rodríguez, Yahir Hernández-Mier, José Hugo Barrón-Zambrano, Juan Carlos Elizondo-Leal, Alan Díaz-Manriquez, Said Polanco-Martagón
Format: Article
Language:English
Published: MDPI AG 2023-09-01
Series:Electronics
Subjects:
Online Access:https://www.mdpi.com/2079-9292/12/18/3891
Description
Summary:Citrus fruits are the second most important crop worldwide. One of the most important tasks is sorting, which involves manually separating the fruit based on its degree of maturity, and in many cases, involves a task carried out manually by human operators. A machine vision-based citrus sorting system can replace labor work for the inspection of fruit sorting. This article proposes a vision system for citrus fruit sorting implemented on a dedicated and efficient Field Programmable Gate Array (FPGA) hardware architecture coupled with a mechanical sorting machine, where the FPGA performs fruit segmentation and color and size classification. We trained a decision tree (DT) using a balanced dataset of reference images to perform pixel classification. We evaluate the segmentation task using a pixel accuracy metric, defined as the ratio between correctly segmented pixels produced by a DT and the total pixels in the reference image segmented offline using Otsu’s thresholding algorithm. The balance between correctly classified images by color or size and their corresponding labels of that color and size evaluates the color and size classification algorithms. Considering these metrics, the system reaches an accuracy of 97% for fruit segmentation, 94% for color classification, and 90% for size classification, running at 60 fps.
ISSN:2079-9292