DMPP reduced nitrification, but not annual N2O emissions from mineral fertilizer applied to oilseed rape on a sandy loam soil

Abstract Direct field emissions of nitrous oxide (N2O) may determine whether biodiesel from oilseed rape (Brassica napus L.) fulfills the EU requirement of at least 50% reduction of greenhouse gas emissions as compared to fossil diesel. However, only few studies have documented fertilizer N emission...

Full description

Bibliographic Details
Main Authors: Henrik Thers, Søren O. Petersen, Lars Elsgaard
Format: Article
Language:English
Published: Wiley 2019-12-01
Series:GCB Bioenergy
Subjects:
Online Access:https://doi.org/10.1111/gcbb.12642
Description
Summary:Abstract Direct field emissions of nitrous oxide (N2O) may determine whether biodiesel from oilseed rape (Brassica napus L.) fulfills the EU requirement of at least 50% reduction of greenhouse gas emissions as compared to fossil diesel. However, only few studies have documented fertilizer N emission factors (EF) and mitigation options for N2O emissions from oilseed rape cropping systems. We conducted a field experiment with three N levels (0, 171, and 217 kg/ha), where the N fertilizer was applied as ammonium sulfate nitrate with or without the nitrification inhibitor 3,4‐dimethylpyrazole phosphate (DMPP). N2O fluxes were measured using static chambers technique and soil samples were analyzed for water and mineral N content during a monitoring period of 368 days. The DMPP treatments showed a significantly increased level of ammonium (NH4+) for up to 18 weeks after spring fertilization as compared to the treatments without DMPP. However, this difference did not result in a corresponding decrease in NO3- soil content, and no differences in cumulative N2O emissions were found between any fertilized treatments with or without DMPP (mean, 1.26 kg N2O‐N ha−1 year−1). More field experiments are needed to clarify whether DMPP‐coated mineral fertilizers could mitigate N2O emissions under different weather conditions, for example, under conditions where fertilization events concurred with rainfall events increasing water‐filled pore space to the assumed 60% threshold for denitrification. Emission factors for mineral N fertilizer were 0.28%–0.36% with a mean of 0.32% across the fertilized treatments. These data concur with recent European studies suggesting that the EF for mineral N fertilizers in oilseed rape cropping systems may typically be lower than the default IPCC value of 1%. Further studies are needed to consolidate an EF for oilseed rape under temperate conditions, which will be determining for the sustainability of Northern European oilseed rape cultivation for biodiesel.
ISSN:1757-1693
1757-1707