Thermal Modeling of the Port on a Refining Furnace to Prevent Copper Infiltration and Slag Accretion

Fire refining of blister copper is a singular process at very high temperatures (~1400 K), which means the furnace is exposed to heavy thermal loads. The charge is directly heated by an internal burner. The impurities in the charge oxidize with the flux of hot gases, creating a slag layer on the top...

Full description

Bibliographic Details
Main Authors: Francisco José Jiménez-Espadafor Aguilar, José Antonio Vélez Godiño, Miguel Torres García, José María. Gallardo Fuentes, Eduardo Díaz Gutiérrez
Format: Article
Language:English
Published: MDPI AG 2021-11-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/14/22/6978
_version_ 1797509525734948864
author Francisco José Jiménez-Espadafor Aguilar
José Antonio Vélez Godiño
Miguel Torres García
José María. Gallardo Fuentes
Eduardo Díaz Gutiérrez
author_facet Francisco José Jiménez-Espadafor Aguilar
José Antonio Vélez Godiño
Miguel Torres García
José María. Gallardo Fuentes
Eduardo Díaz Gutiérrez
author_sort Francisco José Jiménez-Espadafor Aguilar
collection DOAJ
description Fire refining of blister copper is a singular process at very high temperatures (~1400 K), which means the furnace is exposed to heavy thermal loads. The charge is directly heated by an internal burner. The impurities in the charge oxidize with the flux of hot gases, creating a slag layer on the top of the molten bath. This slag is periodically removed, which implies liquid metal flowing through the furnace port. To address its malfunction, a re-design of the furnace port is presented in this work. Due to the lack of previous technical information, the convective heat transfer coefficient between the slag and the furnace port was characterized through a combination of an experimental test and a three-dimensional transient model. Finally, the original design of the furnace port was analyzed and modifications were proposed, resulting in a reduction of the average temperature of the critical areas up to 300 K. This improvement prevents the anchoring of the accretion layer over the port plates and the steel plate from being attacked by the copper.
first_indexed 2024-03-10T05:19:01Z
format Article
id doaj.art-9e51ec2c7fdf43efb9758ddfda07ce13
institution Directory Open Access Journal
issn 1996-1944
language English
last_indexed 2024-03-10T05:19:01Z
publishDate 2021-11-01
publisher MDPI AG
record_format Article
series Materials
spelling doaj.art-9e51ec2c7fdf43efb9758ddfda07ce132023-11-23T00:11:50ZengMDPI AGMaterials1996-19442021-11-011422697810.3390/ma14226978Thermal Modeling of the Port on a Refining Furnace to Prevent Copper Infiltration and Slag AccretionFrancisco José Jiménez-Espadafor Aguilar0José Antonio Vélez Godiño1Miguel Torres García2José María. Gallardo Fuentes3Eduardo Díaz Gutiérrez4Departamento de Ingeniería Energética, Escuela Técnica Superior de Ingeniería de Sevilla, Universidad de Sevilla, Camino de los Descubrimientos, s/n, 41092 Seville, SpainDepartamento de Máquinas y Motores Térmicos, Escuela Superior de Ingeniería, Universidad de Cádiz, Avda. Universidad de Cádiz, nº 10, Puerto Real, 11519 Cádiz, SpainDepartamento de Ingeniería Energética, Escuela Técnica Superior de Ingeniería de Sevilla, Universidad de Sevilla, Camino de los Descubrimientos, s/n, 41092 Seville, SpainDepartamento de Ingeniería y Ciencia de los Materiales y del Transporte, Escuela Técnica Superior de Ingeniería de Sevilla, Universidad de Sevilla, Camino de los Descubrimientos, s/n, 41092 Seville, SpainDepartamento de Ingeniería y Ciencia de los Materiales y del Transporte, Escuela Técnica Superior de Ingeniería de Sevilla, Universidad de Sevilla, Camino de los Descubrimientos, s/n, 41092 Seville, SpainFire refining of blister copper is a singular process at very high temperatures (~1400 K), which means the furnace is exposed to heavy thermal loads. The charge is directly heated by an internal burner. The impurities in the charge oxidize with the flux of hot gases, creating a slag layer on the top of the molten bath. This slag is periodically removed, which implies liquid metal flowing through the furnace port. To address its malfunction, a re-design of the furnace port is presented in this work. Due to the lack of previous technical information, the convective heat transfer coefficient between the slag and the furnace port was characterized through a combination of an experimental test and a three-dimensional transient model. Finally, the original design of the furnace port was analyzed and modifications were proposed, resulting in a reduction of the average temperature of the critical areas up to 300 K. This improvement prevents the anchoring of the accretion layer over the port plates and the steel plate from being attacked by the copper.https://www.mdpi.com/1996-1944/14/22/6978refining furnacecopper infiltrationthermal modelinghigh-temperature heat transfermodel fitting
spellingShingle Francisco José Jiménez-Espadafor Aguilar
José Antonio Vélez Godiño
Miguel Torres García
José María. Gallardo Fuentes
Eduardo Díaz Gutiérrez
Thermal Modeling of the Port on a Refining Furnace to Prevent Copper Infiltration and Slag Accretion
Materials
refining furnace
copper infiltration
thermal modeling
high-temperature heat transfer
model fitting
title Thermal Modeling of the Port on a Refining Furnace to Prevent Copper Infiltration and Slag Accretion
title_full Thermal Modeling of the Port on a Refining Furnace to Prevent Copper Infiltration and Slag Accretion
title_fullStr Thermal Modeling of the Port on a Refining Furnace to Prevent Copper Infiltration and Slag Accretion
title_full_unstemmed Thermal Modeling of the Port on a Refining Furnace to Prevent Copper Infiltration and Slag Accretion
title_short Thermal Modeling of the Port on a Refining Furnace to Prevent Copper Infiltration and Slag Accretion
title_sort thermal modeling of the port on a refining furnace to prevent copper infiltration and slag accretion
topic refining furnace
copper infiltration
thermal modeling
high-temperature heat transfer
model fitting
url https://www.mdpi.com/1996-1944/14/22/6978
work_keys_str_mv AT franciscojosejimenezespadaforaguilar thermalmodelingoftheportonarefiningfurnacetopreventcopperinfiltrationandslagaccretion
AT joseantoniovelezgodino thermalmodelingoftheportonarefiningfurnacetopreventcopperinfiltrationandslagaccretion
AT migueltorresgarcia thermalmodelingoftheportonarefiningfurnacetopreventcopperinfiltrationandslagaccretion
AT josemariagallardofuentes thermalmodelingoftheportonarefiningfurnacetopreventcopperinfiltrationandslagaccretion
AT eduardodiazgutierrez thermalmodelingoftheportonarefiningfurnacetopreventcopperinfiltrationandslagaccretion