Thermal Modeling of the Port on a Refining Furnace to Prevent Copper Infiltration and Slag Accretion
Fire refining of blister copper is a singular process at very high temperatures (~1400 K), which means the furnace is exposed to heavy thermal loads. The charge is directly heated by an internal burner. The impurities in the charge oxidize with the flux of hot gases, creating a slag layer on the top...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-11-01
|
Series: | Materials |
Subjects: | |
Online Access: | https://www.mdpi.com/1996-1944/14/22/6978 |
_version_ | 1797509525734948864 |
---|---|
author | Francisco José Jiménez-Espadafor Aguilar José Antonio Vélez Godiño Miguel Torres García José María. Gallardo Fuentes Eduardo Díaz Gutiérrez |
author_facet | Francisco José Jiménez-Espadafor Aguilar José Antonio Vélez Godiño Miguel Torres García José María. Gallardo Fuentes Eduardo Díaz Gutiérrez |
author_sort | Francisco José Jiménez-Espadafor Aguilar |
collection | DOAJ |
description | Fire refining of blister copper is a singular process at very high temperatures (~1400 K), which means the furnace is exposed to heavy thermal loads. The charge is directly heated by an internal burner. The impurities in the charge oxidize with the flux of hot gases, creating a slag layer on the top of the molten bath. This slag is periodically removed, which implies liquid metal flowing through the furnace port. To address its malfunction, a re-design of the furnace port is presented in this work. Due to the lack of previous technical information, the convective heat transfer coefficient between the slag and the furnace port was characterized through a combination of an experimental test and a three-dimensional transient model. Finally, the original design of the furnace port was analyzed and modifications were proposed, resulting in a reduction of the average temperature of the critical areas up to 300 K. This improvement prevents the anchoring of the accretion layer over the port plates and the steel plate from being attacked by the copper. |
first_indexed | 2024-03-10T05:19:01Z |
format | Article |
id | doaj.art-9e51ec2c7fdf43efb9758ddfda07ce13 |
institution | Directory Open Access Journal |
issn | 1996-1944 |
language | English |
last_indexed | 2024-03-10T05:19:01Z |
publishDate | 2021-11-01 |
publisher | MDPI AG |
record_format | Article |
series | Materials |
spelling | doaj.art-9e51ec2c7fdf43efb9758ddfda07ce132023-11-23T00:11:50ZengMDPI AGMaterials1996-19442021-11-011422697810.3390/ma14226978Thermal Modeling of the Port on a Refining Furnace to Prevent Copper Infiltration and Slag AccretionFrancisco José Jiménez-Espadafor Aguilar0José Antonio Vélez Godiño1Miguel Torres García2José María. Gallardo Fuentes3Eduardo Díaz Gutiérrez4Departamento de Ingeniería Energética, Escuela Técnica Superior de Ingeniería de Sevilla, Universidad de Sevilla, Camino de los Descubrimientos, s/n, 41092 Seville, SpainDepartamento de Máquinas y Motores Térmicos, Escuela Superior de Ingeniería, Universidad de Cádiz, Avda. Universidad de Cádiz, nº 10, Puerto Real, 11519 Cádiz, SpainDepartamento de Ingeniería Energética, Escuela Técnica Superior de Ingeniería de Sevilla, Universidad de Sevilla, Camino de los Descubrimientos, s/n, 41092 Seville, SpainDepartamento de Ingeniería y Ciencia de los Materiales y del Transporte, Escuela Técnica Superior de Ingeniería de Sevilla, Universidad de Sevilla, Camino de los Descubrimientos, s/n, 41092 Seville, SpainDepartamento de Ingeniería y Ciencia de los Materiales y del Transporte, Escuela Técnica Superior de Ingeniería de Sevilla, Universidad de Sevilla, Camino de los Descubrimientos, s/n, 41092 Seville, SpainFire refining of blister copper is a singular process at very high temperatures (~1400 K), which means the furnace is exposed to heavy thermal loads. The charge is directly heated by an internal burner. The impurities in the charge oxidize with the flux of hot gases, creating a slag layer on the top of the molten bath. This slag is periodically removed, which implies liquid metal flowing through the furnace port. To address its malfunction, a re-design of the furnace port is presented in this work. Due to the lack of previous technical information, the convective heat transfer coefficient between the slag and the furnace port was characterized through a combination of an experimental test and a three-dimensional transient model. Finally, the original design of the furnace port was analyzed and modifications were proposed, resulting in a reduction of the average temperature of the critical areas up to 300 K. This improvement prevents the anchoring of the accretion layer over the port plates and the steel plate from being attacked by the copper.https://www.mdpi.com/1996-1944/14/22/6978refining furnacecopper infiltrationthermal modelinghigh-temperature heat transfermodel fitting |
spellingShingle | Francisco José Jiménez-Espadafor Aguilar José Antonio Vélez Godiño Miguel Torres García José María. Gallardo Fuentes Eduardo Díaz Gutiérrez Thermal Modeling of the Port on a Refining Furnace to Prevent Copper Infiltration and Slag Accretion Materials refining furnace copper infiltration thermal modeling high-temperature heat transfer model fitting |
title | Thermal Modeling of the Port on a Refining Furnace to Prevent Copper Infiltration and Slag Accretion |
title_full | Thermal Modeling of the Port on a Refining Furnace to Prevent Copper Infiltration and Slag Accretion |
title_fullStr | Thermal Modeling of the Port on a Refining Furnace to Prevent Copper Infiltration and Slag Accretion |
title_full_unstemmed | Thermal Modeling of the Port on a Refining Furnace to Prevent Copper Infiltration and Slag Accretion |
title_short | Thermal Modeling of the Port on a Refining Furnace to Prevent Copper Infiltration and Slag Accretion |
title_sort | thermal modeling of the port on a refining furnace to prevent copper infiltration and slag accretion |
topic | refining furnace copper infiltration thermal modeling high-temperature heat transfer model fitting |
url | https://www.mdpi.com/1996-1944/14/22/6978 |
work_keys_str_mv | AT franciscojosejimenezespadaforaguilar thermalmodelingoftheportonarefiningfurnacetopreventcopperinfiltrationandslagaccretion AT joseantoniovelezgodino thermalmodelingoftheportonarefiningfurnacetopreventcopperinfiltrationandslagaccretion AT migueltorresgarcia thermalmodelingoftheportonarefiningfurnacetopreventcopperinfiltrationandslagaccretion AT josemariagallardofuentes thermalmodelingoftheportonarefiningfurnacetopreventcopperinfiltrationandslagaccretion AT eduardodiazgutierrez thermalmodelingoftheportonarefiningfurnacetopreventcopperinfiltrationandslagaccretion |