Intercomparison of four airborne imaging DOAS systems for tropospheric NO<sub>2</sub> mapping – the AROMAPEX campaign

<p>We present an intercomparison study of four airborne imaging DOAS instruments, dedicated to the retrieval and high-resolution mapping of tropospheric nitrogen dioxide (<span class="inline-formula">NO<sub>2</sub></span>) vertical column densities (VCDs). The...

Full description

Bibliographic Details
Main Authors: F. Tack, A. Merlaud, A. C. Meier, T. Vlemmix, T. Ruhtz, M.-D. Iordache, X. Ge, L. van der Wal, D. Schuettemeyer, M. Ardelean, A. Calcan, D. Constantin, A. Schönhardt, K. Meuleman, A. Richter, M. Van Roozendael
Format: Article
Language:English
Published: Copernicus Publications 2019-01-01
Series:Atmospheric Measurement Techniques
Online Access:https://www.atmos-meas-tech.net/12/211/2019/amt-12-211-2019.pdf
_version_ 1818259487184650240
author F. Tack
A. Merlaud
A. C. Meier
T. Vlemmix
T. Vlemmix
T. Ruhtz
M.-D. Iordache
X. Ge
X. Ge
L. van der Wal
D. Schuettemeyer
M. Ardelean
A. Calcan
D. Constantin
A. Schönhardt
K. Meuleman
A. Richter
M. Van Roozendael
author_facet F. Tack
A. Merlaud
A. C. Meier
T. Vlemmix
T. Vlemmix
T. Ruhtz
M.-D. Iordache
X. Ge
X. Ge
L. van der Wal
D. Schuettemeyer
M. Ardelean
A. Calcan
D. Constantin
A. Schönhardt
K. Meuleman
A. Richter
M. Van Roozendael
author_sort F. Tack
collection DOAJ
description <p>We present an intercomparison study of four airborne imaging DOAS instruments, dedicated to the retrieval and high-resolution mapping of tropospheric nitrogen dioxide (<span class="inline-formula">NO<sub>2</sub></span>) vertical column densities (VCDs). The AROMAPEX campaign took place in Berlin, Germany, in April 2016 with the primary objective to test and intercompare the performance of experimental airborne imagers. The imaging DOAS instruments were operated simultaneously from two manned aircraft, performing synchronised flights: APEX (VITO–BIRA-IASB) was operated from DLR's DO-228 D-CFFU aircraft at 6.2&thinsp;km in altitude, while AirMAP (IUP-Bremen), SWING (BIRA-IASB), and SBI (TNO–TU Delft–KNMI) were operated from the FUB Cessna 207T D-EAFU at 3.1&thinsp;km. Two synchronised flights took place on 21 April 2016. <span class="inline-formula">NO<sub>2</sub></span> slant columns were retrieved by applying differential optical absorption spectroscopy (DOAS) in the visible wavelength region and converted to VCDs by the computation of appropriate air mass factors (AMFs). Finally, the <span class="inline-formula">NO<sub>2</sub></span> VCDs were georeferenced and mapped at high spatial resolution. For the sake of harmonising the different data sets, efforts were made to agree on a common set of parameter settings, AMF look-up table, and gridding algorithm. The <span class="inline-formula">NO<sub>2</sub></span> horizontal distribution, observed by the different DOAS imagers, shows very similar spatial patterns. The <span class="inline-formula">NO<sub>2</sub></span> field is dominated by two large plumes related to industrial compounds, crossing the city from west to east. The major highways A100 and A113 are also identified as line sources of <span class="inline-formula">NO<sub>2</sub></span>. Retrieved <span class="inline-formula">NO<sub>2</sub></span> VCDs range between <span class="inline-formula">1×10<sup>15</sup></span>&thinsp;molec&thinsp;cm<span class="inline-formula"><sup>−2</sup></span> upwind of the city and <span class="inline-formula">20×10<sup>15</sup></span>&thinsp;molec&thinsp;cm<span class="inline-formula"><sup>−2</sup></span> in the dominant plume, with a mean of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M13" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">7.3</mn><mo>±</mo><mn mathvariant="normal">1.8</mn><mo>×</mo><msup><mn mathvariant="normal">10</mn><mn mathvariant="normal">15</mn></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="76pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="467493f0dc8495e88c4407531840d693"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-12-211-2019-ie00001.svg" width="76pt" height="14pt" src="amt-12-211-2019-ie00001.png"/></svg:svg></span></span>&thinsp;molec&thinsp;cm<span class="inline-formula"><sup>−2</sup></span> for the morning flight and between 1 and <span class="inline-formula">23×10<sup>15</sup></span>&thinsp;molec&thinsp;cm<span class="inline-formula"><sup>−2</sup></span> with a mean of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M17" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">6.0</mn><mo>±</mo><mn mathvariant="normal">1.4</mn><mo>×</mo><msup><mn mathvariant="normal">10</mn><mn mathvariant="normal">15</mn></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="76pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="53b86bf036133c02dc5648cdb35b6dcc"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-12-211-2019-ie00002.svg" width="76pt" height="14pt" src="amt-12-211-2019-ie00002.png"/></svg:svg></span></span>&thinsp;molec&thinsp;cm<span class="inline-formula"><sup>−2</sup></span> for the afternoon flight. The mean <span class="inline-formula">NO<sub>2</sub></span> VCD retrieval errors are in the range of 22&thinsp;% to 36&thinsp;% for all sensors. The four data sets are in good agreement with Pearson correlation coefficients better than 0.9, while the linear regression analyses show slopes close to unity and generally small intercepts.</p>
first_indexed 2024-12-12T18:16:13Z
format Article
id doaj.art-9e701496f06d437b94e0fd2a1d1ce252
institution Directory Open Access Journal
issn 1867-1381
1867-8548
language English
last_indexed 2024-12-12T18:16:13Z
publishDate 2019-01-01
publisher Copernicus Publications
record_format Article
series Atmospheric Measurement Techniques
spelling doaj.art-9e701496f06d437b94e0fd2a1d1ce2522022-12-22T00:16:16ZengCopernicus PublicationsAtmospheric Measurement Techniques1867-13811867-85482019-01-011221123610.5194/amt-12-211-2019Intercomparison of four airborne imaging DOAS systems for tropospheric NO<sub>2</sub> mapping – the AROMAPEX campaignF. Tack0A. Merlaud1A. C. Meier2T. Vlemmix3T. Vlemmix4T. Ruhtz5M.-D. Iordache6X. Ge7X. Ge8L. van der Wal9D. Schuettemeyer10M. Ardelean11A. Calcan12D. Constantin13A. Schönhardt14K. Meuleman15A. Richter16M. Van Roozendael17BIRA-IASB, Royal Belgian Institute for Space Aeronomy, Brussels, BelgiumBIRA-IASB, Royal Belgian Institute for Space Aeronomy, Brussels, BelgiumIUP-Bremen, Institute of Environmental Physics, University of Bremen, Bremen, GermanyTU Delft, Delft University of Technology, Delft, the Netherlandsnow at: KNMI, Royal Netherlands Meteorological Institute, De Bilt, the NetherlandsFUB, Institute for Space Sciences, Freie Universität Berlin, Berlin, GermanyVITO-TAP, Flemish Institute for Technological Research, Mol, BelgiumTU Delft, Delft University of Technology, Delft, the Netherlandsnow at: WUR, Wageningen University and Research, Wageningen, the NetherlandsTNO, Netherlands Organisation for Applied Scientific Research, The Hague, the NetherlandsESA-ESTEC, European Space Agency, Noordwijk, the NetherlandsINCAS, National Institute for Aerospace Research “Elie Carafoli”, Bucharest, RomaniaINCAS, National Institute for Aerospace Research “Elie Carafoli”, Bucharest, Romania“Dunarea de Jos” University of Galati, Galati, RomaniaIUP-Bremen, Institute of Environmental Physics, University of Bremen, Bremen, GermanyVITO-TAP, Flemish Institute for Technological Research, Mol, BelgiumIUP-Bremen, Institute of Environmental Physics, University of Bremen, Bremen, GermanyBIRA-IASB, Royal Belgian Institute for Space Aeronomy, Brussels, Belgium<p>We present an intercomparison study of four airborne imaging DOAS instruments, dedicated to the retrieval and high-resolution mapping of tropospheric nitrogen dioxide (<span class="inline-formula">NO<sub>2</sub></span>) vertical column densities (VCDs). The AROMAPEX campaign took place in Berlin, Germany, in April 2016 with the primary objective to test and intercompare the performance of experimental airborne imagers. The imaging DOAS instruments were operated simultaneously from two manned aircraft, performing synchronised flights: APEX (VITO–BIRA-IASB) was operated from DLR's DO-228 D-CFFU aircraft at 6.2&thinsp;km in altitude, while AirMAP (IUP-Bremen), SWING (BIRA-IASB), and SBI (TNO–TU Delft–KNMI) were operated from the FUB Cessna 207T D-EAFU at 3.1&thinsp;km. Two synchronised flights took place on 21 April 2016. <span class="inline-formula">NO<sub>2</sub></span> slant columns were retrieved by applying differential optical absorption spectroscopy (DOAS) in the visible wavelength region and converted to VCDs by the computation of appropriate air mass factors (AMFs). Finally, the <span class="inline-formula">NO<sub>2</sub></span> VCDs were georeferenced and mapped at high spatial resolution. For the sake of harmonising the different data sets, efforts were made to agree on a common set of parameter settings, AMF look-up table, and gridding algorithm. The <span class="inline-formula">NO<sub>2</sub></span> horizontal distribution, observed by the different DOAS imagers, shows very similar spatial patterns. The <span class="inline-formula">NO<sub>2</sub></span> field is dominated by two large plumes related to industrial compounds, crossing the city from west to east. The major highways A100 and A113 are also identified as line sources of <span class="inline-formula">NO<sub>2</sub></span>. Retrieved <span class="inline-formula">NO<sub>2</sub></span> VCDs range between <span class="inline-formula">1×10<sup>15</sup></span>&thinsp;molec&thinsp;cm<span class="inline-formula"><sup>−2</sup></span> upwind of the city and <span class="inline-formula">20×10<sup>15</sup></span>&thinsp;molec&thinsp;cm<span class="inline-formula"><sup>−2</sup></span> in the dominant plume, with a mean of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M13" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">7.3</mn><mo>±</mo><mn mathvariant="normal">1.8</mn><mo>×</mo><msup><mn mathvariant="normal">10</mn><mn mathvariant="normal">15</mn></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="76pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="467493f0dc8495e88c4407531840d693"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-12-211-2019-ie00001.svg" width="76pt" height="14pt" src="amt-12-211-2019-ie00001.png"/></svg:svg></span></span>&thinsp;molec&thinsp;cm<span class="inline-formula"><sup>−2</sup></span> for the morning flight and between 1 and <span class="inline-formula">23×10<sup>15</sup></span>&thinsp;molec&thinsp;cm<span class="inline-formula"><sup>−2</sup></span> with a mean of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M17" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">6.0</mn><mo>±</mo><mn mathvariant="normal">1.4</mn><mo>×</mo><msup><mn mathvariant="normal">10</mn><mn mathvariant="normal">15</mn></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="76pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="53b86bf036133c02dc5648cdb35b6dcc"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-12-211-2019-ie00002.svg" width="76pt" height="14pt" src="amt-12-211-2019-ie00002.png"/></svg:svg></span></span>&thinsp;molec&thinsp;cm<span class="inline-formula"><sup>−2</sup></span> for the afternoon flight. The mean <span class="inline-formula">NO<sub>2</sub></span> VCD retrieval errors are in the range of 22&thinsp;% to 36&thinsp;% for all sensors. The four data sets are in good agreement with Pearson correlation coefficients better than 0.9, while the linear regression analyses show slopes close to unity and generally small intercepts.</p>https://www.atmos-meas-tech.net/12/211/2019/amt-12-211-2019.pdf
spellingShingle F. Tack
A. Merlaud
A. C. Meier
T. Vlemmix
T. Vlemmix
T. Ruhtz
M.-D. Iordache
X. Ge
X. Ge
L. van der Wal
D. Schuettemeyer
M. Ardelean
A. Calcan
D. Constantin
A. Schönhardt
K. Meuleman
A. Richter
M. Van Roozendael
Intercomparison of four airborne imaging DOAS systems for tropospheric NO<sub>2</sub> mapping – the AROMAPEX campaign
Atmospheric Measurement Techniques
title Intercomparison of four airborne imaging DOAS systems for tropospheric NO<sub>2</sub> mapping – the AROMAPEX campaign
title_full Intercomparison of four airborne imaging DOAS systems for tropospheric NO<sub>2</sub> mapping – the AROMAPEX campaign
title_fullStr Intercomparison of four airborne imaging DOAS systems for tropospheric NO<sub>2</sub> mapping – the AROMAPEX campaign
title_full_unstemmed Intercomparison of four airborne imaging DOAS systems for tropospheric NO<sub>2</sub> mapping – the AROMAPEX campaign
title_short Intercomparison of four airborne imaging DOAS systems for tropospheric NO<sub>2</sub> mapping – the AROMAPEX campaign
title_sort intercomparison of four airborne imaging doas systems for tropospheric no sub 2 sub mapping the aromapex campaign
url https://www.atmos-meas-tech.net/12/211/2019/amt-12-211-2019.pdf
work_keys_str_mv AT ftack intercomparisonoffourairborneimagingdoassystemsfortroposphericnosub2submappingthearomapexcampaign
AT amerlaud intercomparisonoffourairborneimagingdoassystemsfortroposphericnosub2submappingthearomapexcampaign
AT acmeier intercomparisonoffourairborneimagingdoassystemsfortroposphericnosub2submappingthearomapexcampaign
AT tvlemmix intercomparisonoffourairborneimagingdoassystemsfortroposphericnosub2submappingthearomapexcampaign
AT tvlemmix intercomparisonoffourairborneimagingdoassystemsfortroposphericnosub2submappingthearomapexcampaign
AT truhtz intercomparisonoffourairborneimagingdoassystemsfortroposphericnosub2submappingthearomapexcampaign
AT mdiordache intercomparisonoffourairborneimagingdoassystemsfortroposphericnosub2submappingthearomapexcampaign
AT xge intercomparisonoffourairborneimagingdoassystemsfortroposphericnosub2submappingthearomapexcampaign
AT xge intercomparisonoffourairborneimagingdoassystemsfortroposphericnosub2submappingthearomapexcampaign
AT lvanderwal intercomparisonoffourairborneimagingdoassystemsfortroposphericnosub2submappingthearomapexcampaign
AT dschuettemeyer intercomparisonoffourairborneimagingdoassystemsfortroposphericnosub2submappingthearomapexcampaign
AT mardelean intercomparisonoffourairborneimagingdoassystemsfortroposphericnosub2submappingthearomapexcampaign
AT acalcan intercomparisonoffourairborneimagingdoassystemsfortroposphericnosub2submappingthearomapexcampaign
AT dconstantin intercomparisonoffourairborneimagingdoassystemsfortroposphericnosub2submappingthearomapexcampaign
AT aschonhardt intercomparisonoffourairborneimagingdoassystemsfortroposphericnosub2submappingthearomapexcampaign
AT kmeuleman intercomparisonoffourairborneimagingdoassystemsfortroposphericnosub2submappingthearomapexcampaign
AT arichter intercomparisonoffourairborneimagingdoassystemsfortroposphericnosub2submappingthearomapexcampaign
AT mvanroozendael intercomparisonoffourairborneimagingdoassystemsfortroposphericnosub2submappingthearomapexcampaign