Intercomparison of four airborne imaging DOAS systems for tropospheric NO<sub>2</sub> mapping – the AROMAPEX campaign
<p>We present an intercomparison study of four airborne imaging DOAS instruments, dedicated to the retrieval and high-resolution mapping of tropospheric nitrogen dioxide (<span class="inline-formula">NO<sub>2</sub></span>) vertical column densities (VCDs). The...
Main Authors: | , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2019-01-01
|
Series: | Atmospheric Measurement Techniques |
Online Access: | https://www.atmos-meas-tech.net/12/211/2019/amt-12-211-2019.pdf |
_version_ | 1818259487184650240 |
---|---|
author | F. Tack A. Merlaud A. C. Meier T. Vlemmix T. Vlemmix T. Ruhtz M.-D. Iordache X. Ge X. Ge L. van der Wal D. Schuettemeyer M. Ardelean A. Calcan D. Constantin A. Schönhardt K. Meuleman A. Richter M. Van Roozendael |
author_facet | F. Tack A. Merlaud A. C. Meier T. Vlemmix T. Vlemmix T. Ruhtz M.-D. Iordache X. Ge X. Ge L. van der Wal D. Schuettemeyer M. Ardelean A. Calcan D. Constantin A. Schönhardt K. Meuleman A. Richter M. Van Roozendael |
author_sort | F. Tack |
collection | DOAJ |
description | <p>We present an intercomparison study
of four airborne imaging DOAS instruments, dedicated to the retrieval and
high-resolution mapping of tropospheric nitrogen dioxide (<span class="inline-formula">NO<sub>2</sub></span>) vertical
column densities (VCDs). The AROMAPEX campaign took place in Berlin, Germany,
in April 2016 with the primary objective to test and intercompare the
performance of experimental airborne imagers. The imaging DOAS instruments
were operated simultaneously from two manned aircraft, performing
synchronised flights: APEX (VITO–BIRA-IASB) was operated from DLR's DO-228
D-CFFU aircraft at 6.2 km in altitude, while AirMAP (IUP-Bremen), SWING
(BIRA-IASB), and SBI (TNO–TU Delft–KNMI) were operated from the FUB Cessna
207T D-EAFU at 3.1 km. Two synchronised flights took place on 21 April 2016.
<span class="inline-formula">NO<sub>2</sub></span> slant columns were retrieved by applying differential optical
absorption spectroscopy (DOAS) in the visible wavelength region and converted
to VCDs by the computation of appropriate air mass factors (AMFs). Finally,
the <span class="inline-formula">NO<sub>2</sub></span> VCDs were georeferenced and mapped at high spatial resolution.
For the sake of harmonising the different data sets, efforts were made to
agree on a common set of parameter settings, AMF look-up table, and gridding algorithm.
The <span class="inline-formula">NO<sub>2</sub></span> horizontal distribution, observed by the different DOAS
imagers, shows very similar spatial patterns. The <span class="inline-formula">NO<sub>2</sub></span> field is
dominated by two large plumes related to industrial compounds, crossing the
city from west to east. The major highways A100 and A113 are also identified
as line sources of <span class="inline-formula">NO<sub>2</sub></span>. Retrieved <span class="inline-formula">NO<sub>2</sub></span> VCDs range between
<span class="inline-formula">1×10<sup>15</sup></span> molec cm<span class="inline-formula"><sup>−2</sup></span> upwind of the city and <span class="inline-formula">20×10<sup>15</sup></span> molec cm<span class="inline-formula"><sup>−2</sup></span> in the dominant
plume, with a mean of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M13" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">7.3</mn><mo>±</mo><mn mathvariant="normal">1.8</mn><mo>×</mo><msup><mn mathvariant="normal">10</mn><mn mathvariant="normal">15</mn></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="76pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="467493f0dc8495e88c4407531840d693"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-12-211-2019-ie00001.svg" width="76pt" height="14pt" src="amt-12-211-2019-ie00001.png"/></svg:svg></span></span> molec cm<span class="inline-formula"><sup>−2</sup></span> for the morning flight and between
1 and <span class="inline-formula">23×10<sup>15</sup></span> molec cm<span class="inline-formula"><sup>−2</sup></span> with a mean of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M17" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">6.0</mn><mo>±</mo><mn mathvariant="normal">1.4</mn><mo>×</mo><msup><mn mathvariant="normal">10</mn><mn mathvariant="normal">15</mn></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="76pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="53b86bf036133c02dc5648cdb35b6dcc"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-12-211-2019-ie00002.svg" width="76pt" height="14pt" src="amt-12-211-2019-ie00002.png"/></svg:svg></span></span> molec cm<span class="inline-formula"><sup>−2</sup></span> for the afternoon flight. The mean <span class="inline-formula">NO<sub>2</sub></span> VCD retrieval
errors are in the range of 22 % to 36 % for all sensors. The four data sets
are in good agreement with Pearson correlation coefficients better than 0.9,
while the linear regression analyses show slopes close to unity and generally
small intercepts.</p> |
first_indexed | 2024-12-12T18:16:13Z |
format | Article |
id | doaj.art-9e701496f06d437b94e0fd2a1d1ce252 |
institution | Directory Open Access Journal |
issn | 1867-1381 1867-8548 |
language | English |
last_indexed | 2024-12-12T18:16:13Z |
publishDate | 2019-01-01 |
publisher | Copernicus Publications |
record_format | Article |
series | Atmospheric Measurement Techniques |
spelling | doaj.art-9e701496f06d437b94e0fd2a1d1ce2522022-12-22T00:16:16ZengCopernicus PublicationsAtmospheric Measurement Techniques1867-13811867-85482019-01-011221123610.5194/amt-12-211-2019Intercomparison of four airborne imaging DOAS systems for tropospheric NO<sub>2</sub> mapping – the AROMAPEX campaignF. Tack0A. Merlaud1A. C. Meier2T. Vlemmix3T. Vlemmix4T. Ruhtz5M.-D. Iordache6X. Ge7X. Ge8L. van der Wal9D. Schuettemeyer10M. Ardelean11A. Calcan12D. Constantin13A. Schönhardt14K. Meuleman15A. Richter16M. Van Roozendael17BIRA-IASB, Royal Belgian Institute for Space Aeronomy, Brussels, BelgiumBIRA-IASB, Royal Belgian Institute for Space Aeronomy, Brussels, BelgiumIUP-Bremen, Institute of Environmental Physics, University of Bremen, Bremen, GermanyTU Delft, Delft University of Technology, Delft, the Netherlandsnow at: KNMI, Royal Netherlands Meteorological Institute, De Bilt, the NetherlandsFUB, Institute for Space Sciences, Freie Universität Berlin, Berlin, GermanyVITO-TAP, Flemish Institute for Technological Research, Mol, BelgiumTU Delft, Delft University of Technology, Delft, the Netherlandsnow at: WUR, Wageningen University and Research, Wageningen, the NetherlandsTNO, Netherlands Organisation for Applied Scientific Research, The Hague, the NetherlandsESA-ESTEC, European Space Agency, Noordwijk, the NetherlandsINCAS, National Institute for Aerospace Research “Elie Carafoli”, Bucharest, RomaniaINCAS, National Institute for Aerospace Research “Elie Carafoli”, Bucharest, Romania“Dunarea de Jos” University of Galati, Galati, RomaniaIUP-Bremen, Institute of Environmental Physics, University of Bremen, Bremen, GermanyVITO-TAP, Flemish Institute for Technological Research, Mol, BelgiumIUP-Bremen, Institute of Environmental Physics, University of Bremen, Bremen, GermanyBIRA-IASB, Royal Belgian Institute for Space Aeronomy, Brussels, Belgium<p>We present an intercomparison study of four airborne imaging DOAS instruments, dedicated to the retrieval and high-resolution mapping of tropospheric nitrogen dioxide (<span class="inline-formula">NO<sub>2</sub></span>) vertical column densities (VCDs). The AROMAPEX campaign took place in Berlin, Germany, in April 2016 with the primary objective to test and intercompare the performance of experimental airborne imagers. The imaging DOAS instruments were operated simultaneously from two manned aircraft, performing synchronised flights: APEX (VITO–BIRA-IASB) was operated from DLR's DO-228 D-CFFU aircraft at 6.2 km in altitude, while AirMAP (IUP-Bremen), SWING (BIRA-IASB), and SBI (TNO–TU Delft–KNMI) were operated from the FUB Cessna 207T D-EAFU at 3.1 km. Two synchronised flights took place on 21 April 2016. <span class="inline-formula">NO<sub>2</sub></span> slant columns were retrieved by applying differential optical absorption spectroscopy (DOAS) in the visible wavelength region and converted to VCDs by the computation of appropriate air mass factors (AMFs). Finally, the <span class="inline-formula">NO<sub>2</sub></span> VCDs were georeferenced and mapped at high spatial resolution. For the sake of harmonising the different data sets, efforts were made to agree on a common set of parameter settings, AMF look-up table, and gridding algorithm. The <span class="inline-formula">NO<sub>2</sub></span> horizontal distribution, observed by the different DOAS imagers, shows very similar spatial patterns. The <span class="inline-formula">NO<sub>2</sub></span> field is dominated by two large plumes related to industrial compounds, crossing the city from west to east. The major highways A100 and A113 are also identified as line sources of <span class="inline-formula">NO<sub>2</sub></span>. Retrieved <span class="inline-formula">NO<sub>2</sub></span> VCDs range between <span class="inline-formula">1×10<sup>15</sup></span> molec cm<span class="inline-formula"><sup>−2</sup></span> upwind of the city and <span class="inline-formula">20×10<sup>15</sup></span> molec cm<span class="inline-formula"><sup>−2</sup></span> in the dominant plume, with a mean of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M13" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">7.3</mn><mo>±</mo><mn mathvariant="normal">1.8</mn><mo>×</mo><msup><mn mathvariant="normal">10</mn><mn mathvariant="normal">15</mn></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="76pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="467493f0dc8495e88c4407531840d693"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-12-211-2019-ie00001.svg" width="76pt" height="14pt" src="amt-12-211-2019-ie00001.png"/></svg:svg></span></span> molec cm<span class="inline-formula"><sup>−2</sup></span> for the morning flight and between 1 and <span class="inline-formula">23×10<sup>15</sup></span> molec cm<span class="inline-formula"><sup>−2</sup></span> with a mean of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M17" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">6.0</mn><mo>±</mo><mn mathvariant="normal">1.4</mn><mo>×</mo><msup><mn mathvariant="normal">10</mn><mn mathvariant="normal">15</mn></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="76pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="53b86bf036133c02dc5648cdb35b6dcc"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-12-211-2019-ie00002.svg" width="76pt" height="14pt" src="amt-12-211-2019-ie00002.png"/></svg:svg></span></span> molec cm<span class="inline-formula"><sup>−2</sup></span> for the afternoon flight. The mean <span class="inline-formula">NO<sub>2</sub></span> VCD retrieval errors are in the range of 22 % to 36 % for all sensors. The four data sets are in good agreement with Pearson correlation coefficients better than 0.9, while the linear regression analyses show slopes close to unity and generally small intercepts.</p>https://www.atmos-meas-tech.net/12/211/2019/amt-12-211-2019.pdf |
spellingShingle | F. Tack A. Merlaud A. C. Meier T. Vlemmix T. Vlemmix T. Ruhtz M.-D. Iordache X. Ge X. Ge L. van der Wal D. Schuettemeyer M. Ardelean A. Calcan D. Constantin A. Schönhardt K. Meuleman A. Richter M. Van Roozendael Intercomparison of four airborne imaging DOAS systems for tropospheric NO<sub>2</sub> mapping – the AROMAPEX campaign Atmospheric Measurement Techniques |
title | Intercomparison of four airborne imaging DOAS systems for tropospheric NO<sub>2</sub> mapping – the AROMAPEX campaign |
title_full | Intercomparison of four airborne imaging DOAS systems for tropospheric NO<sub>2</sub> mapping – the AROMAPEX campaign |
title_fullStr | Intercomparison of four airborne imaging DOAS systems for tropospheric NO<sub>2</sub> mapping – the AROMAPEX campaign |
title_full_unstemmed | Intercomparison of four airborne imaging DOAS systems for tropospheric NO<sub>2</sub> mapping – the AROMAPEX campaign |
title_short | Intercomparison of four airborne imaging DOAS systems for tropospheric NO<sub>2</sub> mapping – the AROMAPEX campaign |
title_sort | intercomparison of four airborne imaging doas systems for tropospheric no sub 2 sub mapping the aromapex campaign |
url | https://www.atmos-meas-tech.net/12/211/2019/amt-12-211-2019.pdf |
work_keys_str_mv | AT ftack intercomparisonoffourairborneimagingdoassystemsfortroposphericnosub2submappingthearomapexcampaign AT amerlaud intercomparisonoffourairborneimagingdoassystemsfortroposphericnosub2submappingthearomapexcampaign AT acmeier intercomparisonoffourairborneimagingdoassystemsfortroposphericnosub2submappingthearomapexcampaign AT tvlemmix intercomparisonoffourairborneimagingdoassystemsfortroposphericnosub2submappingthearomapexcampaign AT tvlemmix intercomparisonoffourairborneimagingdoassystemsfortroposphericnosub2submappingthearomapexcampaign AT truhtz intercomparisonoffourairborneimagingdoassystemsfortroposphericnosub2submappingthearomapexcampaign AT mdiordache intercomparisonoffourairborneimagingdoassystemsfortroposphericnosub2submappingthearomapexcampaign AT xge intercomparisonoffourairborneimagingdoassystemsfortroposphericnosub2submappingthearomapexcampaign AT xge intercomparisonoffourairborneimagingdoassystemsfortroposphericnosub2submappingthearomapexcampaign AT lvanderwal intercomparisonoffourairborneimagingdoassystemsfortroposphericnosub2submappingthearomapexcampaign AT dschuettemeyer intercomparisonoffourairborneimagingdoassystemsfortroposphericnosub2submappingthearomapexcampaign AT mardelean intercomparisonoffourairborneimagingdoassystemsfortroposphericnosub2submappingthearomapexcampaign AT acalcan intercomparisonoffourairborneimagingdoassystemsfortroposphericnosub2submappingthearomapexcampaign AT dconstantin intercomparisonoffourairborneimagingdoassystemsfortroposphericnosub2submappingthearomapexcampaign AT aschonhardt intercomparisonoffourairborneimagingdoassystemsfortroposphericnosub2submappingthearomapexcampaign AT kmeuleman intercomparisonoffourairborneimagingdoassystemsfortroposphericnosub2submappingthearomapexcampaign AT arichter intercomparisonoffourairborneimagingdoassystemsfortroposphericnosub2submappingthearomapexcampaign AT mvanroozendael intercomparisonoffourairborneimagingdoassystemsfortroposphericnosub2submappingthearomapexcampaign |