Numerical study on nanofluid heat transfer and fluid flow within a micro-channel equipped with an elastic baffle

In this study, the incorporation of a flexible baffle structure at the base of a microelectronic channel is examined to determine its impact on thermal and fluid dynamics. The investigation covers two configurations: case 1, where the heat source is situated at the top section of the microchannel, a...

Full description

Bibliographic Details
Main Authors: Tarek Bouzennada, Mehdi Fteiti, Badr M. Alshammari, Bilel Hadrich, Karim Kriaa, Chemseddine Maatki, Lioua Kolsi
Format: Article
Language:English
Published: Elsevier 2024-04-01
Series:Case Studies in Thermal Engineering
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2214157X24002788
Description
Summary:In this study, the incorporation of a flexible baffle structure at the base of a microelectronic channel is examined to determine its impact on thermal and fluid dynamics. The investigation covers two configurations: case 1, where the heat source is situated at the top section of the microchannel, and case 2, with the heat source placed at the bottom. To cool the electronic component, a nanofluid consisting of water with aluminum oxide (Al2O3) nanoparticles, in concentrations varying from 0% to 6%, is injected into the microchannel, exhibiting a periodic velocity profile at the inlet. The governing equations for the system are resolved using the finite element method for numerical simulation. The results show that the shape and curvature of the baffle significantly affect the heat dissipation efficacy. In particular, the setup with the heat source located at the bottom, adjacent to the flexible baffle, demonstrates the most advantageous cooling performance. The data also show a positive relationship between the nanoparticle volume fraction and enhanced heat transfer, particularly when the heat source is near the bottom baffle for shapes with S = −20 and −10, implying superior convective heat transfer. The findings indicate optimal outcomes are achieved when there is a reduction in pressure drop and fluid resistance.
ISSN:2214-157X