Illuminating ALS Motor Neurons With Optogenetics in Zebrafish

Amyotrophic lateral sclerosis (ALS) is a fatal neurological disorder characterized by progressive degeneration of motor neurons in the brain and spinal cord. Spinal motor neurons align along the spinal cord length within the vertebral column, and extend long axons to connect with skeletal muscles co...

সম্পূর্ণ বিবরণ

গ্রন্থ-পঞ্জীর বিবরন
প্রধান লেখক: Kazuhide Asakawa, Hiroshi Handa, Koichi Kawakami
বিন্যাস: প্রবন্ধ
ভাষা:English
প্রকাশিত: Frontiers Media S.A. 2021-03-01
মালা:Frontiers in Cell and Developmental Biology
বিষয়গুলি:
অনলাইন ব্যবহার করুন:https://www.frontiersin.org/articles/10.3389/fcell.2021.640414/full
_version_ 1831645646704082944
author Kazuhide Asakawa
Hiroshi Handa
Koichi Kawakami
Koichi Kawakami
author_facet Kazuhide Asakawa
Hiroshi Handa
Koichi Kawakami
Koichi Kawakami
author_sort Kazuhide Asakawa
collection DOAJ
description Amyotrophic lateral sclerosis (ALS) is a fatal neurological disorder characterized by progressive degeneration of motor neurons in the brain and spinal cord. Spinal motor neurons align along the spinal cord length within the vertebral column, and extend long axons to connect with skeletal muscles covering the body surface. Due to this anatomy, spinal motor neurons are among the most difficult cells to observe in vivo. Larval zebrafish have transparent bodies that allow non-invasive visualization of whole cells of single spinal motor neurons, from somas to the neuromuscular synapses. This unique feature, combined with its amenability to genome editing, pharmacology, and optogenetics, enables functional analyses of ALS-associated proteins in the spinal motor neurons in vivo with subcellular resolution. Here, we review the zebrafish skeletal neuromuscular system and the optical methods used to study it. We then introduce a recently developed optogenetic zebrafish ALS model that uses light illumination to control oligomerization, phase transition and aggregation of the ALS-associated DNA/RNA-binding protein called TDP-43. Finally, we will discuss how this disease-in-a-fish ALS model can help solve key questions about ALS pathogenesis and lead to new ALS therapeutics.
first_indexed 2024-12-19T13:40:30Z
format Article
id doaj.art-9e9533f958d7407584eb443c5b8923f4
institution Directory Open Access Journal
issn 2296-634X
language English
last_indexed 2024-12-19T13:40:30Z
publishDate 2021-03-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Cell and Developmental Biology
spelling doaj.art-9e9533f958d7407584eb443c5b8923f42022-12-21T20:19:01ZengFrontiers Media S.A.Frontiers in Cell and Developmental Biology2296-634X2021-03-01910.3389/fcell.2021.640414640414Illuminating ALS Motor Neurons With Optogenetics in ZebrafishKazuhide Asakawa0Hiroshi Handa1Koichi Kawakami2Koichi Kawakami3Department of Chemical Biology, Tokyo Medical University, Tokyo, JapanDepartment of Chemical Biology, Tokyo Medical University, Tokyo, JapanDivision of Molecular and Developmental Biology, National Institute of Genetics, Mishima, JapanDepartment of Genetics, Graduate University for Advanced Studies (SOKENDAI), Mishima, JapanAmyotrophic lateral sclerosis (ALS) is a fatal neurological disorder characterized by progressive degeneration of motor neurons in the brain and spinal cord. Spinal motor neurons align along the spinal cord length within the vertebral column, and extend long axons to connect with skeletal muscles covering the body surface. Due to this anatomy, spinal motor neurons are among the most difficult cells to observe in vivo. Larval zebrafish have transparent bodies that allow non-invasive visualization of whole cells of single spinal motor neurons, from somas to the neuromuscular synapses. This unique feature, combined with its amenability to genome editing, pharmacology, and optogenetics, enables functional analyses of ALS-associated proteins in the spinal motor neurons in vivo with subcellular resolution. Here, we review the zebrafish skeletal neuromuscular system and the optical methods used to study it. We then introduce a recently developed optogenetic zebrafish ALS model that uses light illumination to control oligomerization, phase transition and aggregation of the ALS-associated DNA/RNA-binding protein called TDP-43. Finally, we will discuss how this disease-in-a-fish ALS model can help solve key questions about ALS pathogenesis and lead to new ALS therapeutics.https://www.frontiersin.org/articles/10.3389/fcell.2021.640414/fullRNA metabolismphase transitionneurodegenarative diseaseoptogeneticsprotein aggregation
spellingShingle Kazuhide Asakawa
Hiroshi Handa
Koichi Kawakami
Koichi Kawakami
Illuminating ALS Motor Neurons With Optogenetics in Zebrafish
Frontiers in Cell and Developmental Biology
RNA metabolism
phase transition
neurodegenarative disease
optogenetics
protein aggregation
title Illuminating ALS Motor Neurons With Optogenetics in Zebrafish
title_full Illuminating ALS Motor Neurons With Optogenetics in Zebrafish
title_fullStr Illuminating ALS Motor Neurons With Optogenetics in Zebrafish
title_full_unstemmed Illuminating ALS Motor Neurons With Optogenetics in Zebrafish
title_short Illuminating ALS Motor Neurons With Optogenetics in Zebrafish
title_sort illuminating als motor neurons with optogenetics in zebrafish
topic RNA metabolism
phase transition
neurodegenarative disease
optogenetics
protein aggregation
url https://www.frontiersin.org/articles/10.3389/fcell.2021.640414/full
work_keys_str_mv AT kazuhideasakawa illuminatingalsmotorneuronswithoptogeneticsinzebrafish
AT hiroshihanda illuminatingalsmotorneuronswithoptogeneticsinzebrafish
AT koichikawakami illuminatingalsmotorneuronswithoptogeneticsinzebrafish
AT koichikawakami illuminatingalsmotorneuronswithoptogeneticsinzebrafish