Coordinated Control of PV-Ultracapacitor System for Enhanced Operation Under Variable Solar Irradiance and Short-Term Voltage Dips
Utilization of an ultracapacitor (UC)-based energy storage device can provide one of the most efficient solutions for short-term operational challenges in grid-connected photovoltaic (PV) systems. This paper proposes an algorithm for coordinated control of PV and ultracapacitor-based energy storage...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2020-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/9269366/ |
Summary: | Utilization of an ultracapacitor (UC)-based energy storage device can provide one of the most efficient solutions for short-term operational challenges in grid-connected photovoltaic (PV) systems. This paper proposes an algorithm for coordinated control of PV and ultracapacitor-based energy storage system to minimize the effects of sudden changes in solar irradiance and the presence of low voltages at the point of common coupling. In addition, this work proposes an improved multi-mode operational scheme for control of an ultracapacitor-based energy storage system that takes into consideration various associated limits during charging and discharging modes. The effectiveness of the proposed algorithm in mitigating the impacts of low voltages and short term changes in irradiance is demonstrated using simulation analysis carried out on the modified Consortium for Electric Reliability Technology Solutions (CERTS) microgrid testbed. |
---|---|
ISSN: | 2169-3536 |