Summary: | As the mine enters the deep mining stage, there is a need to enhance the compressive strength and toughness of the backfill. The objective of this study is to examine the mechanical properties of cemented tailings backfill after the incorporation of multi-size fibers and to validate the toughening mechanism of basalt fibers (BFs). To achieve this, a series of basic mechanical property tests for multi-size BFs mixing were devised, accompanied by industrial computerized tomography (CT) scanning and discrete element simulation. This study shows that the compressive strength increases and then decreases with the increase of BF dosage at a certain percentage of each size, and the splitting tensile strength gradually increases with the increase of BF dosage. The compressive strength tends to decrease and then increase, and the splitting tensile strength increases and then decreases as the fiber size ratio changes. The distribution of cemented tailings backfill and BF within the discrete element model is random. A few BF cannot play a bridging role; however, a moderate amount of BF is relatively uniformly distributed in the model to form a network structure, which generates a bond between the particles and the matrix and can effectively limit the expansion path of cracks and enhance the toughness.
|