Electronic structure of the (Nd1−xDyx)2Fe14B (0 ≤ x ≤ 1) system studied by X-ray photoelectron spectroscopy

Systematic characterization of electronic structures in the (Nd1−xDyx)2Fe14B system, especially the 4f behavior, provides an insight to the physical nature of the evolution of magnetic properties. A series of X-ray photoelectron spectroscopy (XPS) core-level and valence-band spectra were used to stu...

Full description

Bibliographic Details
Main Authors: Jing Wang, Bin Yang, Le Liang, Li-min Sun, Lan-ting Zhang, Shin-ichi Hirano
Format: Article
Language:English
Published: AIP Publishing LLC 2015-09-01
Series:AIP Advances
Online Access:http://dx.doi.org/10.1063/1.4931920
Description
Summary:Systematic characterization of electronic structures in the (Nd1−xDyx)2Fe14B system, especially the 4f behavior, provides an insight to the physical nature of the evolution of magnetic properties. A series of X-ray photoelectron spectroscopy (XPS) core-level and valence-band spectra were used to study the electronic structures. It was found that substitution of Dy for Nd in Nd2Fe14B results in a nonlinear variation in the evolution of electronic structures. Only the finite coupling between the Nd 4f states and the Fe 3d states is found at both the Nd-rich regime and the Dy-rich regime. When the Dy concentration and the Nd concentration approach to be equal, a strong coupling between the Nd 4f states and the Fe 3d states is found, which results in a bonding state between them. Additionally, the 4f components in the (Nd1−xDyx)2Fe14B system are ascribed to three parts: 1) the individual contribution of the Dy 4f states, which emerges just after the Dy-substitution; 2) the contribution of the coupling between the Nd 4f states and the Dy 4f states, which arises only when 0.4 ≤ x ≤ 0.6; 3) the associated contributions of the Nd 4f states and the Dy 4f states, where the contribution of the Nd 4f states and that of the Dy 4f states are prominent in the Nd-rich regime and Dy-rich regime, respectively.
ISSN:2158-3226