Методи розв'язування початкової задачі з двосторонньою оцінкою локальної похибки

Багато прикладних задач, наприклад для проектування радіоелектронних схем, автоматичних систем управління, розрахунку динаміки механічних систем, задачі хімічної кінетики загалом зводяться до розв'язування нелінійних диференціальних рівнянь і їх систем. Точні розв'язки досліджуваних задач...

Full description

Bibliographic Details
Main Authors: Ya. M. Pelekh, I. S. Budz, A. V. Kunynets, S. M. Mentynskyi, B. M. Fil
Format: Article
Language:English
Published: Ukrainian National Forestry University 2019-12-01
Series:Науковий вісник НЛТУ України
Subjects:
Online Access:https://nv.nltu.edu.ua/index.php/journal/article/view/2089
Description
Summary:Багато прикладних задач, наприклад для проектування радіоелектронних схем, автоматичних систем управління, розрахунку динаміки механічних систем, задачі хімічної кінетики загалом зводяться до розв'язування нелінійних диференціальних рівнянь і їх систем. Точні розв'язки досліджуваних задач можна отримати лише в окремих випадках. Тому потрібно використовувати наближені методи. Під час дослідження математичних моделей виникає потреба знаходити не тільки наближений розв'язок, але й гарантовану оцінку похибки результату. Використання традиційних двосторонніх методів Рунге-Кутта призводить до істотного збільшення обсягу обчислень. Ланцюгові (неперервні) дроби набули широкого застосування у прикладній математиці, оскільки вони за відповідних умов дають високу швидкість збіжності, монотонні та двосторонні наближення, мають слабку чутливість до похибки заокруглення. У роботі виведено методи типу Рунге-Кутта третього порядку точності для розв'язування початкової задачі для звичайних диференціальних рівнянь, що базуються на неперервних дробах. Характерною особливістю таких алгоритмів є те, що за певних значень відповідних параметрів можна отримати як нові, так і традиційні однокрокові методи розв'язання задачі Коші. Запропоновано розрахункові формули другого порядку точності, які на кожному кроці інтегрування дають змогу без додаткових звертань до правої частини диференціального рівняння отримати не тільки верхні та нижні наближення до точного розв'язку, а також дають інформацію про величину головного члена локальної похибки. Для практичної оцінки похибки на кожному кроці інтегрування у разі використання односторонніх формул типу Рунге-Кутта порядку p застосовують двосторонні обчислювальні формули порядку (p–1). Зауважимо, що використовуючи запропоновані розрахункові формули в кожному вузлі сітки будуть отримані декілька наближень до точного розв'язку, порівняння яких дає корисну інформацію, зокрема в питанні вибору кроку інтегрування, або в оцінці точності результату.
ISSN:1994-7836
2519-2477