Identification of the Space-Time Variability of Hydrological Drought in the Arid Region of Northwestern China

Drought monitoring is crucial to water resource management and strategic planning. Thus, the objective of this study is to identify the space-time variability of hydrological drought across the broad arid region of northwestern China. Seven distributions were applied to fitting monthly streamflow re...

Full description

Bibliographic Details
Main Authors: Huaijun Wang, Zhongsheng Chen, Yaning Chen, Yingping Pan, Ru Feng
Format: Article
Language:English
Published: MDPI AG 2019-05-01
Series:Water
Subjects:
Online Access:https://www.mdpi.com/2073-4441/11/5/1051
Description
Summary:Drought monitoring is crucial to water resource management and strategic planning. Thus, the objective of this study is to identify the space-time variability of hydrological drought across the broad arid region of northwestern China. Seven distributions were applied to fitting monthly streamflow records of 16 gauging stations from 10 rivers. Finally, the general logistic distribution was selected as the most appropriate one to compute the Standardized Streamflow Index (SSI). The severity and duration of hydrological droughts were also captured from the SSI series. Moreover, we investigate the relationship between hydrological drought (SSI) and meteorological drought (Standardized Precipitation-Evapotranspiration Index (SPEI)) at different time scales. The results show that drought duration and severity decreased over time in the Aibihu, Irtysh, Kaidu, Aksu, Yarkand, Hoton, Shule, Heihe (upstream), and Shiyang Rivers. However, the Tarim (upstream) and Heihe (middle stream) Rivers showed increasing drought duration and severity and this can be attributed to recent decades human activities. Furthermore, two correlation coefficient patterns between SSI and SPEI were found for the rivers of interest, an “increasing-decreasing” pattern for the Irtysh, Heihe, and Shiyang Rivers, where the precipitation is the main runoff supply, and an “increasing-stable” pattern for Aibihu and the Kaidu, Aksu, Yarkand, Hotan, and Shule Rivers, where glacier melt water provided a relatively high supply of runoff. Our findings are a contribution towards implementing effective water resources evaluation and planning in this arid region.
ISSN:2073-4441