A linkage map for the B-genome of <it>Arachis </it>(Fabaceae) and its synteny to the A-genome

<p>Abstract</p> <p>Background</p> <p><it>Arachis hypogaea </it>(peanut) is an important crop worldwide, being mostly used for edible oil production, direct consumption and animal feed. Cultivated peanut is an allotetraploid species with two different genome...

Full description

Bibliographic Details
Main Authors: Valls José FM, Cavallari Marcelo M, Lopes Catalina R, Pereira Rinaldo W, Guimarães Patrícia M, Leal-Bertioli Soraya CM, Teixeira Cristiane, Alves-Freitas Dione MT, Barbosa Andrea VG, Moretzsohn Márcio C, Bertioli David J, Gimenes Marcos A
Format: Article
Language:English
Published: BMC 2009-04-01
Series:BMC Plant Biology
Online Access:http://www.biomedcentral.com/1471-2229/9/40
_version_ 1811315052994625536
author Valls José FM
Cavallari Marcelo M
Lopes Catalina R
Pereira Rinaldo W
Guimarães Patrícia M
Leal-Bertioli Soraya CM
Teixeira Cristiane
Alves-Freitas Dione MT
Barbosa Andrea VG
Moretzsohn Márcio C
Bertioli David J
Gimenes Marcos A
author_facet Valls José FM
Cavallari Marcelo M
Lopes Catalina R
Pereira Rinaldo W
Guimarães Patrícia M
Leal-Bertioli Soraya CM
Teixeira Cristiane
Alves-Freitas Dione MT
Barbosa Andrea VG
Moretzsohn Márcio C
Bertioli David J
Gimenes Marcos A
author_sort Valls José FM
collection DOAJ
description <p>Abstract</p> <p>Background</p> <p><it>Arachis hypogaea </it>(peanut) is an important crop worldwide, being mostly used for edible oil production, direct consumption and animal feed. Cultivated peanut is an allotetraploid species with two different genome components, A and B. Genetic linkage maps can greatly assist molecular breeding and genomic studies. However, the development of linkage maps for <it>A. hypogaea </it>is difficult because it has very low levels of polymorphism. This can be overcome by the utilization of wild species of <it>Arachis</it>, which present the A- and B-genomes in the diploid state, and show high levels of genetic variability.</p> <p>Results</p> <p>In this work, we constructed a B-genome linkage map, which will complement the previously published map for the A-genome of <it>Arachis</it>, and produced an entire framework for the tetraploid genome. This map is based on an F<sub>2 </sub>population of 93 individuals obtained from the cross between the diploid <it>A. ipaënsis </it>(K30076) and the closely related <it>A. magna </it>(K30097), the former species being the most probable B genome donor to cultivated peanut. In spite of being classified as different species, the parents showed high crossability and relatively low polymorphism (22.3%), compared to other interspecific crosses. The map has 10 linkage groups, with 149 loci spanning a total map distance of 1,294 cM. The microsatellite markers utilized, developed for other <it>Arachis </it>species, showed high transferability (81.7%). Segregation distortion was 21.5%. This B-genome map was compared to the A-genome map using 51 common markers, revealing a high degree of synteny between both genomes.</p> <p>Conclusion</p> <p>The development of genetic maps for <it>Arachis </it>diploid wild species with A- and B-genomes effectively provides a genetic map for the tetraploid cultivated peanut in two separate diploid components and is a significant advance towards the construction of a transferable reference map for <it>Arachis</it>. Additionally, we were able to identify affinities of some <it>Arachis </it>linkage groups with <it>Medicago truncatula</it>, which will allow the transfer of information from the nearly-complete genome sequences of this model legume to the peanut crop.</p>
first_indexed 2024-04-13T11:23:23Z
format Article
id doaj.art-9edba97bc2424287b016a0a84e3c98db
institution Directory Open Access Journal
issn 1471-2229
language English
last_indexed 2024-04-13T11:23:23Z
publishDate 2009-04-01
publisher BMC
record_format Article
series BMC Plant Biology
spelling doaj.art-9edba97bc2424287b016a0a84e3c98db2022-12-22T02:48:46ZengBMCBMC Plant Biology1471-22292009-04-01914010.1186/1471-2229-9-40A linkage map for the B-genome of <it>Arachis </it>(Fabaceae) and its synteny to the A-genomeValls José FMCavallari Marcelo MLopes Catalina RPereira Rinaldo WGuimarães Patrícia MLeal-Bertioli Soraya CMTeixeira CristianeAlves-Freitas Dione MTBarbosa Andrea VGMoretzsohn Márcio CBertioli David JGimenes Marcos A<p>Abstract</p> <p>Background</p> <p><it>Arachis hypogaea </it>(peanut) is an important crop worldwide, being mostly used for edible oil production, direct consumption and animal feed. Cultivated peanut is an allotetraploid species with two different genome components, A and B. Genetic linkage maps can greatly assist molecular breeding and genomic studies. However, the development of linkage maps for <it>A. hypogaea </it>is difficult because it has very low levels of polymorphism. This can be overcome by the utilization of wild species of <it>Arachis</it>, which present the A- and B-genomes in the diploid state, and show high levels of genetic variability.</p> <p>Results</p> <p>In this work, we constructed a B-genome linkage map, which will complement the previously published map for the A-genome of <it>Arachis</it>, and produced an entire framework for the tetraploid genome. This map is based on an F<sub>2 </sub>population of 93 individuals obtained from the cross between the diploid <it>A. ipaënsis </it>(K30076) and the closely related <it>A. magna </it>(K30097), the former species being the most probable B genome donor to cultivated peanut. In spite of being classified as different species, the parents showed high crossability and relatively low polymorphism (22.3%), compared to other interspecific crosses. The map has 10 linkage groups, with 149 loci spanning a total map distance of 1,294 cM. The microsatellite markers utilized, developed for other <it>Arachis </it>species, showed high transferability (81.7%). Segregation distortion was 21.5%. This B-genome map was compared to the A-genome map using 51 common markers, revealing a high degree of synteny between both genomes.</p> <p>Conclusion</p> <p>The development of genetic maps for <it>Arachis </it>diploid wild species with A- and B-genomes effectively provides a genetic map for the tetraploid cultivated peanut in two separate diploid components and is a significant advance towards the construction of a transferable reference map for <it>Arachis</it>. Additionally, we were able to identify affinities of some <it>Arachis </it>linkage groups with <it>Medicago truncatula</it>, which will allow the transfer of information from the nearly-complete genome sequences of this model legume to the peanut crop.</p>http://www.biomedcentral.com/1471-2229/9/40
spellingShingle Valls José FM
Cavallari Marcelo M
Lopes Catalina R
Pereira Rinaldo W
Guimarães Patrícia M
Leal-Bertioli Soraya CM
Teixeira Cristiane
Alves-Freitas Dione MT
Barbosa Andrea VG
Moretzsohn Márcio C
Bertioli David J
Gimenes Marcos A
A linkage map for the B-genome of <it>Arachis </it>(Fabaceae) and its synteny to the A-genome
BMC Plant Biology
title A linkage map for the B-genome of <it>Arachis </it>(Fabaceae) and its synteny to the A-genome
title_full A linkage map for the B-genome of <it>Arachis </it>(Fabaceae) and its synteny to the A-genome
title_fullStr A linkage map for the B-genome of <it>Arachis </it>(Fabaceae) and its synteny to the A-genome
title_full_unstemmed A linkage map for the B-genome of <it>Arachis </it>(Fabaceae) and its synteny to the A-genome
title_short A linkage map for the B-genome of <it>Arachis </it>(Fabaceae) and its synteny to the A-genome
title_sort linkage map for the b genome of it arachis it fabaceae and its synteny to the a genome
url http://www.biomedcentral.com/1471-2229/9/40
work_keys_str_mv AT vallsjosefm alinkagemapforthebgenomeofitarachisitfabaceaeanditssyntenytotheagenome
AT cavallarimarcelom alinkagemapforthebgenomeofitarachisitfabaceaeanditssyntenytotheagenome
AT lopescatalinar alinkagemapforthebgenomeofitarachisitfabaceaeanditssyntenytotheagenome
AT pereirarinaldow alinkagemapforthebgenomeofitarachisitfabaceaeanditssyntenytotheagenome
AT guimaraespatriciam alinkagemapforthebgenomeofitarachisitfabaceaeanditssyntenytotheagenome
AT lealbertiolisorayacm alinkagemapforthebgenomeofitarachisitfabaceaeanditssyntenytotheagenome
AT teixeiracristiane alinkagemapforthebgenomeofitarachisitfabaceaeanditssyntenytotheagenome
AT alvesfreitasdionemt alinkagemapforthebgenomeofitarachisitfabaceaeanditssyntenytotheagenome
AT barbosaandreavg alinkagemapforthebgenomeofitarachisitfabaceaeanditssyntenytotheagenome
AT moretzsohnmarcioc alinkagemapforthebgenomeofitarachisitfabaceaeanditssyntenytotheagenome
AT bertiolidavidj alinkagemapforthebgenomeofitarachisitfabaceaeanditssyntenytotheagenome
AT gimenesmarcosa alinkagemapforthebgenomeofitarachisitfabaceaeanditssyntenytotheagenome
AT vallsjosefm linkagemapforthebgenomeofitarachisitfabaceaeanditssyntenytotheagenome
AT cavallarimarcelom linkagemapforthebgenomeofitarachisitfabaceaeanditssyntenytotheagenome
AT lopescatalinar linkagemapforthebgenomeofitarachisitfabaceaeanditssyntenytotheagenome
AT pereirarinaldow linkagemapforthebgenomeofitarachisitfabaceaeanditssyntenytotheagenome
AT guimaraespatriciam linkagemapforthebgenomeofitarachisitfabaceaeanditssyntenytotheagenome
AT lealbertiolisorayacm linkagemapforthebgenomeofitarachisitfabaceaeanditssyntenytotheagenome
AT teixeiracristiane linkagemapforthebgenomeofitarachisitfabaceaeanditssyntenytotheagenome
AT alvesfreitasdionemt linkagemapforthebgenomeofitarachisitfabaceaeanditssyntenytotheagenome
AT barbosaandreavg linkagemapforthebgenomeofitarachisitfabaceaeanditssyntenytotheagenome
AT moretzsohnmarcioc linkagemapforthebgenomeofitarachisitfabaceaeanditssyntenytotheagenome
AT bertiolidavidj linkagemapforthebgenomeofitarachisitfabaceaeanditssyntenytotheagenome
AT gimenesmarcosa linkagemapforthebgenomeofitarachisitfabaceaeanditssyntenytotheagenome