Dipole evolution: perspectives for collectivity and γ*A collisions

Abstract The transverse, spatial structure of protons is an area revealing fundamental properties of matter, and provides key input for deeper understanding of emerging collective phenomena in high energy collisions of protons, as well as collisions of heavy ions. In this paper eccentricities and ec...

Full description

Bibliographic Details
Main Authors: Christian Bierlich, Christine O. Rasmussen
Format: Article
Language:English
Published: SpringerOpen 2019-10-01
Series:Journal of High Energy Physics
Subjects:
Online Access:http://link.springer.com/article/10.1007/JHEP10(2019)026
Description
Summary:Abstract The transverse, spatial structure of protons is an area revealing fundamental properties of matter, and provides key input for deeper understanding of emerging collective phenomena in high energy collisions of protons, as well as collisions of heavy ions. In this paper eccentricities and eccentricity fluctuations are predicted using the dipole formulation of BFKL evolution. Furthermore, first steps are taken towards generation of fully exclusive final states of γ*A collisions, by assessing the importance of colour fluctuations in the initial state. Such steps are crucial for the preparation of event generators for a future electron-ion collider. Due to the connection between an impact parameter picture of the proton structure, and cross sections of ep and pp collisions, the model parameters can be fully determined by fits to such quantities, leaving results as real predictions of the model.
ISSN:1029-8479