The 55K SNP-Based Exploration of QTLs for Spikelet Number Per Spike in a Tetraploid Wheat (Triticum turgidum L.) Population: Chinese Landrace “Ailanmai” × Wild Emmer
Spikelet number per spike (SNS) is the primary factor that determines wheat yield. Common wheat breeding reduces the genetic diversity among elite germplasm resources, leading to a detrimental effect on future wheat production. It is, therefore, necessary to explore new genetic resources for SNS to...
Main Authors: | , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2021-08-01
|
Series: | Frontiers in Plant Science |
Subjects: | |
Online Access: | https://www.frontiersin.org/articles/10.3389/fpls.2021.732837/full |
_version_ | 1818600435657736192 |
---|---|
author | Ziqiang Mo Jing Zhu Jiatai Wei Jieguang Zhou Qiang Xu Huaping Tang Yang Mu Mei Deng Qiantao Jiang Yaxi Liu Guoyue Chen Jirui Wang Pengfei Qi Wei Li Yuming Wei Youliang Zheng Xiujin Lan Jian Ma |
author_facet | Ziqiang Mo Jing Zhu Jiatai Wei Jieguang Zhou Qiang Xu Huaping Tang Yang Mu Mei Deng Qiantao Jiang Yaxi Liu Guoyue Chen Jirui Wang Pengfei Qi Wei Li Yuming Wei Youliang Zheng Xiujin Lan Jian Ma |
author_sort | Ziqiang Mo |
collection | DOAJ |
description | Spikelet number per spike (SNS) is the primary factor that determines wheat yield. Common wheat breeding reduces the genetic diversity among elite germplasm resources, leading to a detrimental effect on future wheat production. It is, therefore, necessary to explore new genetic resources for SNS to increase wheat yield. A tetraploid landrace “Ailanmai” × wild emmer wheat recombinant inbred line (RIL) population was used to construct a genetic map using a wheat 55K single- nucleotide polymorphism (SNP) array. The linkage map containing 1,150 bin markers with a total genetic distance of 2,411.8 cm was obtained. Based on the phenotypic data from the eight environments and best linear unbiased prediction (BLUP) values, five quantitative trait loci (QTLs) for SNS were identified, explaining 6.71–29.40% of the phenotypic variation. Two of them, QSns.sau-AM-2B.2 and QSns.sau-AM-3B.2, were detected as a major and novel QTL. Their effects were further validated in two additional F2 populations using tightly linked kompetitive allele-specific PCR (KASP) markers. Potential candidate genes within the physical intervals of the corresponding QTLs were predicted to participate in inflorescence development and spikelet formation. Genetic associations between SNS and other agronomic traits were also detected and analyzed. This study demonstrates the feasibility of the wheat 55K SNP array developed for common wheat in the genetic mapping of tetraploid population and shows the potential application of wheat-related species in wheat improvement programs. |
first_indexed | 2024-12-16T12:35:27Z |
format | Article |
id | doaj.art-9efcd97f43184d9d9f699a5937d584c6 |
institution | Directory Open Access Journal |
issn | 1664-462X |
language | English |
last_indexed | 2024-12-16T12:35:27Z |
publishDate | 2021-08-01 |
publisher | Frontiers Media S.A. |
record_format | Article |
series | Frontiers in Plant Science |
spelling | doaj.art-9efcd97f43184d9d9f699a5937d584c62022-12-21T22:31:35ZengFrontiers Media S.A.Frontiers in Plant Science1664-462X2021-08-011210.3389/fpls.2021.732837732837The 55K SNP-Based Exploration of QTLs for Spikelet Number Per Spike in a Tetraploid Wheat (Triticum turgidum L.) Population: Chinese Landrace “Ailanmai” × Wild EmmerZiqiang Mo0Jing Zhu1Jiatai Wei2Jieguang Zhou3Qiang Xu4Huaping Tang5Yang Mu6Mei Deng7Qiantao Jiang8Yaxi Liu9Guoyue Chen10Jirui Wang11Pengfei Qi12Wei Li13Yuming Wei14Youliang Zheng15Xiujin Lan16Jian Ma17State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, ChinaState Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, ChinaState Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, ChinaState Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, ChinaState Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, ChinaState Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, ChinaState Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, ChinaState Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, ChinaState Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, ChinaState Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, ChinaState Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, ChinaState Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, ChinaState Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, ChinaCollege of Agronomy, Sichuan Agricultural University, Chengdu, ChinaState Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, ChinaState Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, ChinaState Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, ChinaState Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, ChinaSpikelet number per spike (SNS) is the primary factor that determines wheat yield. Common wheat breeding reduces the genetic diversity among elite germplasm resources, leading to a detrimental effect on future wheat production. It is, therefore, necessary to explore new genetic resources for SNS to increase wheat yield. A tetraploid landrace “Ailanmai” × wild emmer wheat recombinant inbred line (RIL) population was used to construct a genetic map using a wheat 55K single- nucleotide polymorphism (SNP) array. The linkage map containing 1,150 bin markers with a total genetic distance of 2,411.8 cm was obtained. Based on the phenotypic data from the eight environments and best linear unbiased prediction (BLUP) values, five quantitative trait loci (QTLs) for SNS were identified, explaining 6.71–29.40% of the phenotypic variation. Two of them, QSns.sau-AM-2B.2 and QSns.sau-AM-3B.2, were detected as a major and novel QTL. Their effects were further validated in two additional F2 populations using tightly linked kompetitive allele-specific PCR (KASP) markers. Potential candidate genes within the physical intervals of the corresponding QTLs were predicted to participate in inflorescence development and spikelet formation. Genetic associations between SNS and other agronomic traits were also detected and analyzed. This study demonstrates the feasibility of the wheat 55K SNP array developed for common wheat in the genetic mapping of tetraploid population and shows the potential application of wheat-related species in wheat improvement programs.https://www.frontiersin.org/articles/10.3389/fpls.2021.732837/fulltetraploid wheathigh-quality genetic mapspikelet number per spikeQTL mappinggenetic correlationspotential application |
spellingShingle | Ziqiang Mo Jing Zhu Jiatai Wei Jieguang Zhou Qiang Xu Huaping Tang Yang Mu Mei Deng Qiantao Jiang Yaxi Liu Guoyue Chen Jirui Wang Pengfei Qi Wei Li Yuming Wei Youliang Zheng Xiujin Lan Jian Ma The 55K SNP-Based Exploration of QTLs for Spikelet Number Per Spike in a Tetraploid Wheat (Triticum turgidum L.) Population: Chinese Landrace “Ailanmai” × Wild Emmer Frontiers in Plant Science tetraploid wheat high-quality genetic map spikelet number per spike QTL mapping genetic correlations potential application |
title | The 55K SNP-Based Exploration of QTLs for Spikelet Number Per Spike in a Tetraploid Wheat (Triticum turgidum L.) Population: Chinese Landrace “Ailanmai” × Wild Emmer |
title_full | The 55K SNP-Based Exploration of QTLs for Spikelet Number Per Spike in a Tetraploid Wheat (Triticum turgidum L.) Population: Chinese Landrace “Ailanmai” × Wild Emmer |
title_fullStr | The 55K SNP-Based Exploration of QTLs for Spikelet Number Per Spike in a Tetraploid Wheat (Triticum turgidum L.) Population: Chinese Landrace “Ailanmai” × Wild Emmer |
title_full_unstemmed | The 55K SNP-Based Exploration of QTLs for Spikelet Number Per Spike in a Tetraploid Wheat (Triticum turgidum L.) Population: Chinese Landrace “Ailanmai” × Wild Emmer |
title_short | The 55K SNP-Based Exploration of QTLs for Spikelet Number Per Spike in a Tetraploid Wheat (Triticum turgidum L.) Population: Chinese Landrace “Ailanmai” × Wild Emmer |
title_sort | 55k snp based exploration of qtls for spikelet number per spike in a tetraploid wheat triticum turgidum l population chinese landrace ailanmai wild emmer |
topic | tetraploid wheat high-quality genetic map spikelet number per spike QTL mapping genetic correlations potential application |
url | https://www.frontiersin.org/articles/10.3389/fpls.2021.732837/full |
work_keys_str_mv | AT ziqiangmo the55ksnpbasedexplorationofqtlsforspikeletnumberperspikeinatetraploidwheattriticumturgidumlpopulationchineselandraceailanmaiwildemmer AT jingzhu the55ksnpbasedexplorationofqtlsforspikeletnumberperspikeinatetraploidwheattriticumturgidumlpopulationchineselandraceailanmaiwildemmer AT jiataiwei the55ksnpbasedexplorationofqtlsforspikeletnumberperspikeinatetraploidwheattriticumturgidumlpopulationchineselandraceailanmaiwildemmer AT jieguangzhou the55ksnpbasedexplorationofqtlsforspikeletnumberperspikeinatetraploidwheattriticumturgidumlpopulationchineselandraceailanmaiwildemmer AT qiangxu the55ksnpbasedexplorationofqtlsforspikeletnumberperspikeinatetraploidwheattriticumturgidumlpopulationchineselandraceailanmaiwildemmer AT huapingtang the55ksnpbasedexplorationofqtlsforspikeletnumberperspikeinatetraploidwheattriticumturgidumlpopulationchineselandraceailanmaiwildemmer AT yangmu the55ksnpbasedexplorationofqtlsforspikeletnumberperspikeinatetraploidwheattriticumturgidumlpopulationchineselandraceailanmaiwildemmer AT meideng the55ksnpbasedexplorationofqtlsforspikeletnumberperspikeinatetraploidwheattriticumturgidumlpopulationchineselandraceailanmaiwildemmer AT qiantaojiang the55ksnpbasedexplorationofqtlsforspikeletnumberperspikeinatetraploidwheattriticumturgidumlpopulationchineselandraceailanmaiwildemmer AT yaxiliu the55ksnpbasedexplorationofqtlsforspikeletnumberperspikeinatetraploidwheattriticumturgidumlpopulationchineselandraceailanmaiwildemmer AT guoyuechen the55ksnpbasedexplorationofqtlsforspikeletnumberperspikeinatetraploidwheattriticumturgidumlpopulationchineselandraceailanmaiwildemmer AT jiruiwang the55ksnpbasedexplorationofqtlsforspikeletnumberperspikeinatetraploidwheattriticumturgidumlpopulationchineselandraceailanmaiwildemmer AT pengfeiqi the55ksnpbasedexplorationofqtlsforspikeletnumberperspikeinatetraploidwheattriticumturgidumlpopulationchineselandraceailanmaiwildemmer AT weili the55ksnpbasedexplorationofqtlsforspikeletnumberperspikeinatetraploidwheattriticumturgidumlpopulationchineselandraceailanmaiwildemmer AT yumingwei the55ksnpbasedexplorationofqtlsforspikeletnumberperspikeinatetraploidwheattriticumturgidumlpopulationchineselandraceailanmaiwildemmer AT youliangzheng the55ksnpbasedexplorationofqtlsforspikeletnumberperspikeinatetraploidwheattriticumturgidumlpopulationchineselandraceailanmaiwildemmer AT xiujinlan the55ksnpbasedexplorationofqtlsforspikeletnumberperspikeinatetraploidwheattriticumturgidumlpopulationchineselandraceailanmaiwildemmer AT jianma the55ksnpbasedexplorationofqtlsforspikeletnumberperspikeinatetraploidwheattriticumturgidumlpopulationchineselandraceailanmaiwildemmer AT ziqiangmo 55ksnpbasedexplorationofqtlsforspikeletnumberperspikeinatetraploidwheattriticumturgidumlpopulationchineselandraceailanmaiwildemmer AT jingzhu 55ksnpbasedexplorationofqtlsforspikeletnumberperspikeinatetraploidwheattriticumturgidumlpopulationchineselandraceailanmaiwildemmer AT jiataiwei 55ksnpbasedexplorationofqtlsforspikeletnumberperspikeinatetraploidwheattriticumturgidumlpopulationchineselandraceailanmaiwildemmer AT jieguangzhou 55ksnpbasedexplorationofqtlsforspikeletnumberperspikeinatetraploidwheattriticumturgidumlpopulationchineselandraceailanmaiwildemmer AT qiangxu 55ksnpbasedexplorationofqtlsforspikeletnumberperspikeinatetraploidwheattriticumturgidumlpopulationchineselandraceailanmaiwildemmer AT huapingtang 55ksnpbasedexplorationofqtlsforspikeletnumberperspikeinatetraploidwheattriticumturgidumlpopulationchineselandraceailanmaiwildemmer AT yangmu 55ksnpbasedexplorationofqtlsforspikeletnumberperspikeinatetraploidwheattriticumturgidumlpopulationchineselandraceailanmaiwildemmer AT meideng 55ksnpbasedexplorationofqtlsforspikeletnumberperspikeinatetraploidwheattriticumturgidumlpopulationchineselandraceailanmaiwildemmer AT qiantaojiang 55ksnpbasedexplorationofqtlsforspikeletnumberperspikeinatetraploidwheattriticumturgidumlpopulationchineselandraceailanmaiwildemmer AT yaxiliu 55ksnpbasedexplorationofqtlsforspikeletnumberperspikeinatetraploidwheattriticumturgidumlpopulationchineselandraceailanmaiwildemmer AT guoyuechen 55ksnpbasedexplorationofqtlsforspikeletnumberperspikeinatetraploidwheattriticumturgidumlpopulationchineselandraceailanmaiwildemmer AT jiruiwang 55ksnpbasedexplorationofqtlsforspikeletnumberperspikeinatetraploidwheattriticumturgidumlpopulationchineselandraceailanmaiwildemmer AT pengfeiqi 55ksnpbasedexplorationofqtlsforspikeletnumberperspikeinatetraploidwheattriticumturgidumlpopulationchineselandraceailanmaiwildemmer AT weili 55ksnpbasedexplorationofqtlsforspikeletnumberperspikeinatetraploidwheattriticumturgidumlpopulationchineselandraceailanmaiwildemmer AT yumingwei 55ksnpbasedexplorationofqtlsforspikeletnumberperspikeinatetraploidwheattriticumturgidumlpopulationchineselandraceailanmaiwildemmer AT youliangzheng 55ksnpbasedexplorationofqtlsforspikeletnumberperspikeinatetraploidwheattriticumturgidumlpopulationchineselandraceailanmaiwildemmer AT xiujinlan 55ksnpbasedexplorationofqtlsforspikeletnumberperspikeinatetraploidwheattriticumturgidumlpopulationchineselandraceailanmaiwildemmer AT jianma 55ksnpbasedexplorationofqtlsforspikeletnumberperspikeinatetraploidwheattriticumturgidumlpopulationchineselandraceailanmaiwildemmer |