Satellite Remote Sensing-Based In-Season Diagnosis of Rice Nitrogen Status in Northeast China
Rice farming in Northeast China is crucially important for China’s food security and sustainable development. A key challenge is how to optimize nitrogen (N) management to ensure high yield production while improving N use efficiency and protecting the environment. Handheld chlorophyll meter (CM) an...
Main Authors: | , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2015-08-01
|
Series: | Remote Sensing |
Subjects: | |
Online Access: | http://www.mdpi.com/2072-4292/7/8/10646 |
_version_ | 1819004499161776128 |
---|---|
author | Shanyu Huang Yuxin Miao Guangming Zhao Fei Yuan Xiaobo Ma Chuanxiang Tan Weifeng Yu Martin L. Gnyp Victoria I.S. Lenz-Wiedemann Uwe Rascher Georg Bareth |
author_facet | Shanyu Huang Yuxin Miao Guangming Zhao Fei Yuan Xiaobo Ma Chuanxiang Tan Weifeng Yu Martin L. Gnyp Victoria I.S. Lenz-Wiedemann Uwe Rascher Georg Bareth |
author_sort | Shanyu Huang |
collection | DOAJ |
description | Rice farming in Northeast China is crucially important for China’s food security and sustainable development. A key challenge is how to optimize nitrogen (N) management to ensure high yield production while improving N use efficiency and protecting the environment. Handheld chlorophyll meter (CM) and active crop canopy sensors have been used to improve rice N management in this region. However, these technologies are still time consuming for large-scale applications. Satellite remote sensing provides a promising technology for large-scale crop growth monitoring and precision management. The objective of this study was to evaluate the potential of using FORMOSAT-2 satellite images to diagnose rice N status for guiding topdressing N application at the stem elongation stage in Northeast China. Five farmers’ fields (three in 2011 and two in 2012) were selected from the Qixing Farm in Heilongjiang Province of Northeast China. FORMOSAT-2 satellite images were collected in late June. Simultaneously, 92 field samples were collected and six agronomic variables, including aboveground biomass, leaf area index (LAI), plant N concentration (PNC), plant N uptake (PNU), CM readings and N nutrition index (NNI) defined as the ratio of actual PNC and critical PNC, were determined. Based on the FORMOSAT-2 imagery, a total of 50 vegetation indices (VIs) were computed and correlated with the field-based agronomic variables. Results indicated that 45% of NNI variability could be explained using Ratio Vegetation Index 3 (RVI3) directly across years. A more practical and promising approach was proposed by using satellite remote sensing to estimate aboveground biomass and PNU at the panicle initiation stage and then using these two variables to estimate NNI indirectly (R2 = 0.52 across years). Further, the difference between the estimated PNU and the critical PNU can be used to guide the topdressing N application rate adjustments. |
first_indexed | 2024-12-20T23:37:52Z |
format | Article |
id | doaj.art-9f142ff07ac84da9852aec5290b3560d |
institution | Directory Open Access Journal |
issn | 2072-4292 |
language | English |
last_indexed | 2024-12-20T23:37:52Z |
publishDate | 2015-08-01 |
publisher | MDPI AG |
record_format | Article |
series | Remote Sensing |
spelling | doaj.art-9f142ff07ac84da9852aec5290b3560d2022-12-21T19:23:10ZengMDPI AGRemote Sensing2072-42922015-08-0178106461066710.3390/rs70810646rs70810646Satellite Remote Sensing-Based In-Season Diagnosis of Rice Nitrogen Status in Northeast ChinaShanyu Huang0Yuxin Miao1Guangming Zhao2Fei Yuan3Xiaobo Ma4Chuanxiang Tan5Weifeng Yu6Martin L. Gnyp7Victoria I.S. Lenz-Wiedemann8Uwe Rascher9Georg Bareth10International Center for Agro-Informatics and Sustainable Development, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100083, ChinaInternational Center for Agro-Informatics and Sustainable Development, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100083, ChinaInternational Center for Agro-Informatics and Sustainable Development, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100083, ChinaInternational Center for Agro-Informatics and Sustainable Development, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100083, ChinaInternational Center for Agro-Informatics and Sustainable Development, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100083, ChinaInternational Center for Agro-Informatics and Sustainable Development, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100083, ChinaInternational Center for Agro-Informatics and Sustainable Development, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100083, ChinaInternational Center for Agro-Informatics and Sustainable Development, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100083, ChinaInternational Center for Agro-Informatics and Sustainable Development, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100083, ChinaInternational Center for Agro-Informatics and Sustainable Development, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100083, ChinaInternational Center for Agro-Informatics and Sustainable Development, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100083, ChinaRice farming in Northeast China is crucially important for China’s food security and sustainable development. A key challenge is how to optimize nitrogen (N) management to ensure high yield production while improving N use efficiency and protecting the environment. Handheld chlorophyll meter (CM) and active crop canopy sensors have been used to improve rice N management in this region. However, these technologies are still time consuming for large-scale applications. Satellite remote sensing provides a promising technology for large-scale crop growth monitoring and precision management. The objective of this study was to evaluate the potential of using FORMOSAT-2 satellite images to diagnose rice N status for guiding topdressing N application at the stem elongation stage in Northeast China. Five farmers’ fields (three in 2011 and two in 2012) were selected from the Qixing Farm in Heilongjiang Province of Northeast China. FORMOSAT-2 satellite images were collected in late June. Simultaneously, 92 field samples were collected and six agronomic variables, including aboveground biomass, leaf area index (LAI), plant N concentration (PNC), plant N uptake (PNU), CM readings and N nutrition index (NNI) defined as the ratio of actual PNC and critical PNC, were determined. Based on the FORMOSAT-2 imagery, a total of 50 vegetation indices (VIs) were computed and correlated with the field-based agronomic variables. Results indicated that 45% of NNI variability could be explained using Ratio Vegetation Index 3 (RVI3) directly across years. A more practical and promising approach was proposed by using satellite remote sensing to estimate aboveground biomass and PNU at the panicle initiation stage and then using these two variables to estimate NNI indirectly (R2 = 0.52 across years). Further, the difference between the estimated PNU and the critical PNU can be used to guide the topdressing N application rate adjustments.http://www.mdpi.com/2072-4292/7/8/10646satellite remote sensingnitrogen status diagnosisprecision nitrogen managementchlorophyll meternitrogen nutrition indexriceFORMOSAT-2 |
spellingShingle | Shanyu Huang Yuxin Miao Guangming Zhao Fei Yuan Xiaobo Ma Chuanxiang Tan Weifeng Yu Martin L. Gnyp Victoria I.S. Lenz-Wiedemann Uwe Rascher Georg Bareth Satellite Remote Sensing-Based In-Season Diagnosis of Rice Nitrogen Status in Northeast China Remote Sensing satellite remote sensing nitrogen status diagnosis precision nitrogen management chlorophyll meter nitrogen nutrition index rice FORMOSAT-2 |
title | Satellite Remote Sensing-Based In-Season Diagnosis of Rice Nitrogen Status in Northeast China |
title_full | Satellite Remote Sensing-Based In-Season Diagnosis of Rice Nitrogen Status in Northeast China |
title_fullStr | Satellite Remote Sensing-Based In-Season Diagnosis of Rice Nitrogen Status in Northeast China |
title_full_unstemmed | Satellite Remote Sensing-Based In-Season Diagnosis of Rice Nitrogen Status in Northeast China |
title_short | Satellite Remote Sensing-Based In-Season Diagnosis of Rice Nitrogen Status in Northeast China |
title_sort | satellite remote sensing based in season diagnosis of rice nitrogen status in northeast china |
topic | satellite remote sensing nitrogen status diagnosis precision nitrogen management chlorophyll meter nitrogen nutrition index rice FORMOSAT-2 |
url | http://www.mdpi.com/2072-4292/7/8/10646 |
work_keys_str_mv | AT shanyuhuang satelliteremotesensingbasedinseasondiagnosisofricenitrogenstatusinnortheastchina AT yuxinmiao satelliteremotesensingbasedinseasondiagnosisofricenitrogenstatusinnortheastchina AT guangmingzhao satelliteremotesensingbasedinseasondiagnosisofricenitrogenstatusinnortheastchina AT feiyuan satelliteremotesensingbasedinseasondiagnosisofricenitrogenstatusinnortheastchina AT xiaoboma satelliteremotesensingbasedinseasondiagnosisofricenitrogenstatusinnortheastchina AT chuanxiangtan satelliteremotesensingbasedinseasondiagnosisofricenitrogenstatusinnortheastchina AT weifengyu satelliteremotesensingbasedinseasondiagnosisofricenitrogenstatusinnortheastchina AT martinlgnyp satelliteremotesensingbasedinseasondiagnosisofricenitrogenstatusinnortheastchina AT victoriaislenzwiedemann satelliteremotesensingbasedinseasondiagnosisofricenitrogenstatusinnortheastchina AT uwerascher satelliteremotesensingbasedinseasondiagnosisofricenitrogenstatusinnortheastchina AT georgbareth satelliteremotesensingbasedinseasondiagnosisofricenitrogenstatusinnortheastchina |