Dark photon searches with atomic transitions

Abstract Dark matter could be made up of dark photons, massive but very light particles whose interactions with matter resemble those of usual photons but suppressed by a small mixing parameter. We analyze the main approaches to dark photon interactions and how they can be applied to direct detectio...

Full description

Bibliographic Details
Main Authors: C. Álvarez-Luna, J.A.R. Cembranos
Format: Article
Language:English
Published: SpringerOpen 2019-07-01
Series:Journal of High Energy Physics
Subjects:
Online Access:http://link.springer.com/article/10.1007/JHEP07(2019)110
Description
Summary:Abstract Dark matter could be made up of dark photons, massive but very light particles whose interactions with matter resemble those of usual photons but suppressed by a small mixing parameter. We analyze the main approaches to dark photon interactions and how they can be applied to direct detection experiments which test different ranges of masses and mixings. A new experiment based on counting dark photons from induced atomic transitions in a target material is proposed. This approach appears to be particularly appropriate for dark photon detection in the meV mass range, extending the constraints in the mixing parameter by up to eight orders of magnitude with respect to previous experiments.
ISSN:1029-8479