Assessing the Privacy of mHealth Apps for Self-Tracking: Heuristic Evaluation Approach

BackgroundThe recent proliferation of self-tracking technologies has allowed individuals to generate significant quantities of data about their lifestyle. These data can be used to support health interventions and monitor outcomes. However, these data are often stored and processed by vendors who ha...

Full description

Bibliographic Details
Main Authors: Hutton, Luke, Price, Blaine A, Kelly, Ryan, McCormick, Ciaran, Bandara, Arosha K, Hatzakis, Tally, Meadows, Maureen, Nuseibeh, Bashar
Format: Article
Language:English
Published: JMIR Publications 2018-10-01
Series:JMIR mHealth and uHealth
Online Access:http://mhealth.jmir.org/2018/10/e185/
_version_ 1829470764476137472
author Hutton, Luke
Price, Blaine A
Kelly, Ryan
McCormick, Ciaran
Bandara, Arosha K
Hatzakis, Tally
Meadows, Maureen
Nuseibeh, Bashar
author_facet Hutton, Luke
Price, Blaine A
Kelly, Ryan
McCormick, Ciaran
Bandara, Arosha K
Hatzakis, Tally
Meadows, Maureen
Nuseibeh, Bashar
author_sort Hutton, Luke
collection DOAJ
description BackgroundThe recent proliferation of self-tracking technologies has allowed individuals to generate significant quantities of data about their lifestyle. These data can be used to support health interventions and monitor outcomes. However, these data are often stored and processed by vendors who have commercial motivations, and thus, they may not be treated with the sensitivity with which other medical data are treated. As sensors and apps that enable self-tracking continue to become more sophisticated, the privacy implications become more severe in turn. However, methods for systematically identifying privacy issues in such apps are currently lacking. ObjectiveThe objective of our study was to understand how current mass-market apps perform with respect to privacy. We did this by introducing a set of heuristics for evaluating privacy characteristics of self-tracking services. MethodsUsing our heuristics, we conducted an analysis of 64 popular self-tracking services to determine the extent to which the services satisfy various dimensions of privacy. We then used descriptive statistics and statistical models to explore whether any particular categories of an app perform better than others in terms of privacy. ResultsWe found that the majority of services examined failed to provide users with full access to their own data, did not acquire sufficient consent for the use of the data, or inadequately extended controls over disclosures to third parties. Furthermore, the type of app, in terms of the category of data collected, was not a useful predictor of its privacy. However, we found that apps that collected health-related data (eg, exercise and weight) performed worse for privacy than those designed for other types of self-tracking. ConclusionsOur study draws attention to the poor performance of current self-tracking technologies in terms of privacy, motivating the need for standards that can ensure that future self-tracking apps are stronger with respect to upholding users’ privacy. Our heuristic evaluation method supports the retrospective evaluation of privacy in self-tracking apps and can be used as a prescriptive framework to achieve privacy-by-design in future apps.
first_indexed 2024-12-14T01:49:29Z
format Article
id doaj.art-9f2d8e10dc61484b84c8b1b10873e64b
institution Directory Open Access Journal
issn 2291-5222
language English
last_indexed 2024-12-14T01:49:29Z
publishDate 2018-10-01
publisher JMIR Publications
record_format Article
series JMIR mHealth and uHealth
spelling doaj.art-9f2d8e10dc61484b84c8b1b10873e64b2022-12-21T23:21:25ZengJMIR PublicationsJMIR mHealth and uHealth2291-52222018-10-01610e18510.2196/mhealth.9217Assessing the Privacy of mHealth Apps for Self-Tracking: Heuristic Evaluation ApproachHutton, LukePrice, Blaine AKelly, RyanMcCormick, CiaranBandara, Arosha KHatzakis, TallyMeadows, MaureenNuseibeh, BasharBackgroundThe recent proliferation of self-tracking technologies has allowed individuals to generate significant quantities of data about their lifestyle. These data can be used to support health interventions and monitor outcomes. However, these data are often stored and processed by vendors who have commercial motivations, and thus, they may not be treated with the sensitivity with which other medical data are treated. As sensors and apps that enable self-tracking continue to become more sophisticated, the privacy implications become more severe in turn. However, methods for systematically identifying privacy issues in such apps are currently lacking. ObjectiveThe objective of our study was to understand how current mass-market apps perform with respect to privacy. We did this by introducing a set of heuristics for evaluating privacy characteristics of self-tracking services. MethodsUsing our heuristics, we conducted an analysis of 64 popular self-tracking services to determine the extent to which the services satisfy various dimensions of privacy. We then used descriptive statistics and statistical models to explore whether any particular categories of an app perform better than others in terms of privacy. ResultsWe found that the majority of services examined failed to provide users with full access to their own data, did not acquire sufficient consent for the use of the data, or inadequately extended controls over disclosures to third parties. Furthermore, the type of app, in terms of the category of data collected, was not a useful predictor of its privacy. However, we found that apps that collected health-related data (eg, exercise and weight) performed worse for privacy than those designed for other types of self-tracking. ConclusionsOur study draws attention to the poor performance of current self-tracking technologies in terms of privacy, motivating the need for standards that can ensure that future self-tracking apps are stronger with respect to upholding users’ privacy. Our heuristic evaluation method supports the retrospective evaluation of privacy in self-tracking apps and can be used as a prescriptive framework to achieve privacy-by-design in future apps.http://mhealth.jmir.org/2018/10/e185/
spellingShingle Hutton, Luke
Price, Blaine A
Kelly, Ryan
McCormick, Ciaran
Bandara, Arosha K
Hatzakis, Tally
Meadows, Maureen
Nuseibeh, Bashar
Assessing the Privacy of mHealth Apps for Self-Tracking: Heuristic Evaluation Approach
JMIR mHealth and uHealth
title Assessing the Privacy of mHealth Apps for Self-Tracking: Heuristic Evaluation Approach
title_full Assessing the Privacy of mHealth Apps for Self-Tracking: Heuristic Evaluation Approach
title_fullStr Assessing the Privacy of mHealth Apps for Self-Tracking: Heuristic Evaluation Approach
title_full_unstemmed Assessing the Privacy of mHealth Apps for Self-Tracking: Heuristic Evaluation Approach
title_short Assessing the Privacy of mHealth Apps for Self-Tracking: Heuristic Evaluation Approach
title_sort assessing the privacy of mhealth apps for self tracking heuristic evaluation approach
url http://mhealth.jmir.org/2018/10/e185/
work_keys_str_mv AT huttonluke assessingtheprivacyofmhealthappsforselftrackingheuristicevaluationapproach
AT priceblainea assessingtheprivacyofmhealthappsforselftrackingheuristicevaluationapproach
AT kellyryan assessingtheprivacyofmhealthappsforselftrackingheuristicevaluationapproach
AT mccormickciaran assessingtheprivacyofmhealthappsforselftrackingheuristicevaluationapproach
AT bandaraaroshak assessingtheprivacyofmhealthappsforselftrackingheuristicevaluationapproach
AT hatzakistally assessingtheprivacyofmhealthappsforselftrackingheuristicevaluationapproach
AT meadowsmaureen assessingtheprivacyofmhealthappsforselftrackingheuristicevaluationapproach
AT nuseibehbashar assessingtheprivacyofmhealthappsforselftrackingheuristicevaluationapproach