Deep Learning for 3D Reconstruction, Augmentation, and Registration: A Review Paper

The research groups in computer vision, graphics, and machine learning have dedicated a substantial amount of attention to the areas of 3D object reconstruction, augmentation, and registration. Deep learning is the predominant method used in artificial intelligence for addressing computer vision cha...

Full description

Bibliographic Details
Main Authors: Prasoon Kumar Vinodkumar, Dogus Karabulut, Egils Avots, Cagri Ozcinar, Gholamreza Anbarjafari
Format: Article
Language:English
Published: MDPI AG 2024-03-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/26/3/235
Description
Summary:The research groups in computer vision, graphics, and machine learning have dedicated a substantial amount of attention to the areas of 3D object reconstruction, augmentation, and registration. Deep learning is the predominant method used in artificial intelligence for addressing computer vision challenges. However, deep learning on three-dimensional data presents distinct obstacles and is now in its nascent phase. There have been significant advancements in deep learning specifically for three-dimensional data, offering a range of ways to address these issues. This study offers a comprehensive examination of the latest advancements in deep learning methodologies. We examine many benchmark models for the tasks of 3D object registration, augmentation, and reconstruction. We thoroughly analyse their architectures, advantages, and constraints. In summary, this report provides a comprehensive overview of recent advancements in three-dimensional deep learning and highlights unresolved research areas that will need to be addressed in the future.
ISSN:1099-4300