A Multimodal Ensemble Driven by Multiobjective Optimisation to Predict Overall Survival in Non-Small-Cell Lung Cancer

Lung cancer accounts for more deaths worldwide than any other cancer disease. In order to provide patients with the most effective treatment for these aggressive tumours, multimodal learning is emerging as a new and promising field of research that aims to extract complementary information from the...

Full description

Bibliographic Details
Main Authors: Camillo Maria Caruso, Valerio Guarrasi, Ermanno Cordelli, Rosa Sicilia, Silvia Gentile, Laura Messina, Michele Fiore, Claudia Piccolo, Bruno Beomonte Zobel, Giulio Iannello, Sara Ramella, Paolo Soda
Format: Article
Language:English
Published: MDPI AG 2022-11-01
Series:Journal of Imaging
Subjects:
Online Access:https://www.mdpi.com/2313-433X/8/11/298
_version_ 1827646437240864768
author Camillo Maria Caruso
Valerio Guarrasi
Ermanno Cordelli
Rosa Sicilia
Silvia Gentile
Laura Messina
Michele Fiore
Claudia Piccolo
Bruno Beomonte Zobel
Giulio Iannello
Sara Ramella
Paolo Soda
author_facet Camillo Maria Caruso
Valerio Guarrasi
Ermanno Cordelli
Rosa Sicilia
Silvia Gentile
Laura Messina
Michele Fiore
Claudia Piccolo
Bruno Beomonte Zobel
Giulio Iannello
Sara Ramella
Paolo Soda
author_sort Camillo Maria Caruso
collection DOAJ
description Lung cancer accounts for more deaths worldwide than any other cancer disease. In order to provide patients with the most effective treatment for these aggressive tumours, multimodal learning is emerging as a new and promising field of research that aims to extract complementary information from the data of different modalities for prognostic and predictive purposes. This knowledge could be used to optimise current treatments and maximise their effectiveness. To predict overall survival, in this work, we investigate the use of multimodal learning on the CLARO dataset, which includes CT images and clinical data collected from a cohort of non-small-cell lung cancer patients. Our method allows the identification of the optimal set of classifiers to be included in the ensemble in a late fusion approach. Specifically, after training unimodal models on each modality, it selects the best ensemble by solving a multiobjective optimisation problem that maximises both the recognition performance and the diversity of the predictions. In the ensemble, the labels of each sample are assigned using the majority voting rule. As further validation, we show that the proposed ensemble outperforms the models learning a single modality, obtaining state-of-the-art results on the task at hand.
first_indexed 2024-03-09T18:57:53Z
format Article
id doaj.art-9f43983c043040b2b41a7f20b0715321
institution Directory Open Access Journal
issn 2313-433X
language English
last_indexed 2024-03-09T18:57:53Z
publishDate 2022-11-01
publisher MDPI AG
record_format Article
series Journal of Imaging
spelling doaj.art-9f43983c043040b2b41a7f20b07153212023-11-24T05:20:51ZengMDPI AGJournal of Imaging2313-433X2022-11-0181129810.3390/jimaging8110298A Multimodal Ensemble Driven by Multiobjective Optimisation to Predict Overall Survival in Non-Small-Cell Lung CancerCamillo Maria Caruso0Valerio Guarrasi1Ermanno Cordelli2Rosa Sicilia3Silvia Gentile4Laura Messina5Michele Fiore6Claudia Piccolo7Bruno Beomonte Zobel8Giulio Iannello9Sara Ramella10Paolo Soda11Research Unit of Computer Systems and Bioinformatics, Department of Engineering, Università Campus Bio-Medico di Roma, Via Àlvaro del Portillo, 21, 00128 Roma, ItalyResearch Unit of Computer Systems and Bioinformatics, Department of Engineering, Università Campus Bio-Medico di Roma, Via Àlvaro del Portillo, 21, 00128 Roma, ItalyResearch Unit of Computer Systems and Bioinformatics, Department of Engineering, Università Campus Bio-Medico di Roma, Via Àlvaro del Portillo, 21, 00128 Roma, ItalyResearch Unit of Computer Systems and Bioinformatics, Department of Engineering, Università Campus Bio-Medico di Roma, Via Àlvaro del Portillo, 21, 00128 Roma, ItalyOperative Research Unit of Radiation Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, ItalyOperative Research Unit of Diagnostic Imaging, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, ItalyOperative Research Unit of Radiation Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, ItalyOperative Research Unit of Diagnostic Imaging, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, ItalyOperative Research Unit of Diagnostic Imaging, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, ItalyResearch Unit of Computer Systems and Bioinformatics, Department of Engineering, Università Campus Bio-Medico di Roma, Via Àlvaro del Portillo, 21, 00128 Roma, ItalyOperative Research Unit of Radiation Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, ItalyResearch Unit of Computer Systems and Bioinformatics, Department of Engineering, Università Campus Bio-Medico di Roma, Via Àlvaro del Portillo, 21, 00128 Roma, ItalyLung cancer accounts for more deaths worldwide than any other cancer disease. In order to provide patients with the most effective treatment for these aggressive tumours, multimodal learning is emerging as a new and promising field of research that aims to extract complementary information from the data of different modalities for prognostic and predictive purposes. This knowledge could be used to optimise current treatments and maximise their effectiveness. To predict overall survival, in this work, we investigate the use of multimodal learning on the CLARO dataset, which includes CT images and clinical data collected from a cohort of non-small-cell lung cancer patients. Our method allows the identification of the optimal set of classifiers to be included in the ensemble in a late fusion approach. Specifically, after training unimodal models on each modality, it selects the best ensemble by solving a multiobjective optimisation problem that maximises both the recognition performance and the diversity of the predictions. In the ensemble, the labels of each sample are assigned using the majority voting rule. As further validation, we show that the proposed ensemble outperforms the models learning a single modality, obtaining state-of-the-art results on the task at hand.https://www.mdpi.com/2313-433X/8/11/298multimodal deep learningmultiexpert systemsoptimisationconvolutional neural networksprecision medicineoncology
spellingShingle Camillo Maria Caruso
Valerio Guarrasi
Ermanno Cordelli
Rosa Sicilia
Silvia Gentile
Laura Messina
Michele Fiore
Claudia Piccolo
Bruno Beomonte Zobel
Giulio Iannello
Sara Ramella
Paolo Soda
A Multimodal Ensemble Driven by Multiobjective Optimisation to Predict Overall Survival in Non-Small-Cell Lung Cancer
Journal of Imaging
multimodal deep learning
multiexpert systems
optimisation
convolutional neural networks
precision medicine
oncology
title A Multimodal Ensemble Driven by Multiobjective Optimisation to Predict Overall Survival in Non-Small-Cell Lung Cancer
title_full A Multimodal Ensemble Driven by Multiobjective Optimisation to Predict Overall Survival in Non-Small-Cell Lung Cancer
title_fullStr A Multimodal Ensemble Driven by Multiobjective Optimisation to Predict Overall Survival in Non-Small-Cell Lung Cancer
title_full_unstemmed A Multimodal Ensemble Driven by Multiobjective Optimisation to Predict Overall Survival in Non-Small-Cell Lung Cancer
title_short A Multimodal Ensemble Driven by Multiobjective Optimisation to Predict Overall Survival in Non-Small-Cell Lung Cancer
title_sort multimodal ensemble driven by multiobjective optimisation to predict overall survival in non small cell lung cancer
topic multimodal deep learning
multiexpert systems
optimisation
convolutional neural networks
precision medicine
oncology
url https://www.mdpi.com/2313-433X/8/11/298
work_keys_str_mv AT camillomariacaruso amultimodalensembledrivenbymultiobjectiveoptimisationtopredictoverallsurvivalinnonsmallcelllungcancer
AT valerioguarrasi amultimodalensembledrivenbymultiobjectiveoptimisationtopredictoverallsurvivalinnonsmallcelllungcancer
AT ermannocordelli amultimodalensembledrivenbymultiobjectiveoptimisationtopredictoverallsurvivalinnonsmallcelllungcancer
AT rosasicilia amultimodalensembledrivenbymultiobjectiveoptimisationtopredictoverallsurvivalinnonsmallcelllungcancer
AT silviagentile amultimodalensembledrivenbymultiobjectiveoptimisationtopredictoverallsurvivalinnonsmallcelllungcancer
AT lauramessina amultimodalensembledrivenbymultiobjectiveoptimisationtopredictoverallsurvivalinnonsmallcelllungcancer
AT michelefiore amultimodalensembledrivenbymultiobjectiveoptimisationtopredictoverallsurvivalinnonsmallcelllungcancer
AT claudiapiccolo amultimodalensembledrivenbymultiobjectiveoptimisationtopredictoverallsurvivalinnonsmallcelllungcancer
AT brunobeomontezobel amultimodalensembledrivenbymultiobjectiveoptimisationtopredictoverallsurvivalinnonsmallcelllungcancer
AT giulioiannello amultimodalensembledrivenbymultiobjectiveoptimisationtopredictoverallsurvivalinnonsmallcelllungcancer
AT sararamella amultimodalensembledrivenbymultiobjectiveoptimisationtopredictoverallsurvivalinnonsmallcelllungcancer
AT paolosoda amultimodalensembledrivenbymultiobjectiveoptimisationtopredictoverallsurvivalinnonsmallcelllungcancer
AT camillomariacaruso multimodalensembledrivenbymultiobjectiveoptimisationtopredictoverallsurvivalinnonsmallcelllungcancer
AT valerioguarrasi multimodalensembledrivenbymultiobjectiveoptimisationtopredictoverallsurvivalinnonsmallcelllungcancer
AT ermannocordelli multimodalensembledrivenbymultiobjectiveoptimisationtopredictoverallsurvivalinnonsmallcelllungcancer
AT rosasicilia multimodalensembledrivenbymultiobjectiveoptimisationtopredictoverallsurvivalinnonsmallcelllungcancer
AT silviagentile multimodalensembledrivenbymultiobjectiveoptimisationtopredictoverallsurvivalinnonsmallcelllungcancer
AT lauramessina multimodalensembledrivenbymultiobjectiveoptimisationtopredictoverallsurvivalinnonsmallcelllungcancer
AT michelefiore multimodalensembledrivenbymultiobjectiveoptimisationtopredictoverallsurvivalinnonsmallcelllungcancer
AT claudiapiccolo multimodalensembledrivenbymultiobjectiveoptimisationtopredictoverallsurvivalinnonsmallcelllungcancer
AT brunobeomontezobel multimodalensembledrivenbymultiobjectiveoptimisationtopredictoverallsurvivalinnonsmallcelllungcancer
AT giulioiannello multimodalensembledrivenbymultiobjectiveoptimisationtopredictoverallsurvivalinnonsmallcelllungcancer
AT sararamella multimodalensembledrivenbymultiobjectiveoptimisationtopredictoverallsurvivalinnonsmallcelllungcancer
AT paolosoda multimodalensembledrivenbymultiobjectiveoptimisationtopredictoverallsurvivalinnonsmallcelllungcancer