Summary: | Wearable electrocardiogram (ECG) devices are universally used around the world for patients who have cardiovascular disease (CVD). At present, how to suppress motion artifacts is one of the most challenging issues in the field of physiological signal processing. In this paper, we propose an adaptive cancellation algorithm based on multi-inertial sensors to suppress motion artifacts in ambulatory ECGs. Firstly, this method collects information related to the electrode motion through multi-inertial sensors. Then, the part that is not related to the electrode motion is removed through wavelet transform, which improves the correlation of the reference input signal. In this way, the ability of the adaptive cancellation algorithm to remove motion artifacts is improved in the ambulatory ECG. Subsequent experimentation demonstrated that the wavelet adaptive cancellation algorithm based on multi-inertial sensors can effectively remove motion artifacts in ambulatory ECGs.
|