Precise Analysis on Mutual Inductance Variation in Dynamic Wireless Charging of Electric Vehicle
Wireless power transfer provides an opportunity to charge electric vehicles (EVs) without electrical cables. Two categories of this technique are distinguished: Stationary Wireless Charging (SWC) and Dynamic Wireless Charging (DWC) systems. Implementation of DWC is more desirable than SWC as it can...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2018-03-01
|
Series: | Energies |
Subjects: | |
Online Access: | http://www.mdpi.com/1996-1073/11/3/624 |
_version_ | 1828370268325675008 |
---|---|
author | Ainur Rakhymbay Anvar Khamitov Mehdi Bagheri Batyrbek Alimkhanuly Maxim Lu Toan Phung |
author_facet | Ainur Rakhymbay Anvar Khamitov Mehdi Bagheri Batyrbek Alimkhanuly Maxim Lu Toan Phung |
author_sort | Ainur Rakhymbay |
collection | DOAJ |
description | Wireless power transfer provides an opportunity to charge electric vehicles (EVs) without electrical cables. Two categories of this technique are distinguished: Stationary Wireless Charging (SWC) and Dynamic Wireless Charging (DWC) systems. Implementation of DWC is more desirable than SWC as it can potentially eliminate challenges associated with heavy weight batteries and time-consuming charging processes. However, power transfer efficiency and range, lateral misalignment of coils as well as implementation cost are issues affecting DWC. These issues need to be addressed through developing coil architectures and topologies as well as operating novel semiconductor switches at higher frequencies. This study presents a small-scale dynamic wireless power transfer system for EV. It specifically concentrates on analyzing the dynamic mutual inductance between the coils due to the misalignment as it has significant influence on the EV charging process, particularly, over the output power and overall efficiency. A simulation study is carried out to explore dynamic mutual inductance profile between the transmitter and receiver coils. Mutual inductance simulation results are then verified through practical measurements on fabricated coils. Integrating the practical results into the model, an EV DWC power transfer simulation is conducted and the relation between dynamic mutual inductance and output power are discussed technically. |
first_indexed | 2024-04-14T06:35:39Z |
format | Article |
id | doaj.art-9f509153e7a34da388a35e21becf1c93 |
institution | Directory Open Access Journal |
issn | 1996-1073 |
language | English |
last_indexed | 2024-04-14T06:35:39Z |
publishDate | 2018-03-01 |
publisher | MDPI AG |
record_format | Article |
series | Energies |
spelling | doaj.art-9f509153e7a34da388a35e21becf1c932022-12-22T02:07:29ZengMDPI AGEnergies1996-10732018-03-0111362410.3390/en11030624en11030624Precise Analysis on Mutual Inductance Variation in Dynamic Wireless Charging of Electric VehicleAinur Rakhymbay0Anvar Khamitov1Mehdi Bagheri2Batyrbek Alimkhanuly3Maxim Lu4Toan Phung5Department of Electrical and Electronic Engineering, School of Engineering, Nazarbayev University, Astana 010000, KazakhstanDepartment of Electrical and Electronic Engineering, School of Engineering, Nazarbayev University, Astana 010000, KazakhstanDepartment of Electrical and Electronic Engineering, School of Engineering, Nazarbayev University, Astana 010000, KazakhstanDepartment of Electrical and Electronic Engineering, School of Engineering, Nazarbayev University, Astana 010000, KazakhstanDepartment of Electrical and Electronic Engineering, School of Engineering, Nazarbayev University, Astana 010000, KazakhstanSchool of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, NSW 2052, AustraliaWireless power transfer provides an opportunity to charge electric vehicles (EVs) without electrical cables. Two categories of this technique are distinguished: Stationary Wireless Charging (SWC) and Dynamic Wireless Charging (DWC) systems. Implementation of DWC is more desirable than SWC as it can potentially eliminate challenges associated with heavy weight batteries and time-consuming charging processes. However, power transfer efficiency and range, lateral misalignment of coils as well as implementation cost are issues affecting DWC. These issues need to be addressed through developing coil architectures and topologies as well as operating novel semiconductor switches at higher frequencies. This study presents a small-scale dynamic wireless power transfer system for EV. It specifically concentrates on analyzing the dynamic mutual inductance between the coils due to the misalignment as it has significant influence on the EV charging process, particularly, over the output power and overall efficiency. A simulation study is carried out to explore dynamic mutual inductance profile between the transmitter and receiver coils. Mutual inductance simulation results are then verified through practical measurements on fabricated coils. Integrating the practical results into the model, an EV DWC power transfer simulation is conducted and the relation between dynamic mutual inductance and output power are discussed technically.http://www.mdpi.com/1996-1073/11/3/624coil designDynamic Wireless Power Transfer (DWPT)electric vehicle (EV)mutual inductance |
spellingShingle | Ainur Rakhymbay Anvar Khamitov Mehdi Bagheri Batyrbek Alimkhanuly Maxim Lu Toan Phung Precise Analysis on Mutual Inductance Variation in Dynamic Wireless Charging of Electric Vehicle Energies coil design Dynamic Wireless Power Transfer (DWPT) electric vehicle (EV) mutual inductance |
title | Precise Analysis on Mutual Inductance Variation in Dynamic Wireless Charging of Electric Vehicle |
title_full | Precise Analysis on Mutual Inductance Variation in Dynamic Wireless Charging of Electric Vehicle |
title_fullStr | Precise Analysis on Mutual Inductance Variation in Dynamic Wireless Charging of Electric Vehicle |
title_full_unstemmed | Precise Analysis on Mutual Inductance Variation in Dynamic Wireless Charging of Electric Vehicle |
title_short | Precise Analysis on Mutual Inductance Variation in Dynamic Wireless Charging of Electric Vehicle |
title_sort | precise analysis on mutual inductance variation in dynamic wireless charging of electric vehicle |
topic | coil design Dynamic Wireless Power Transfer (DWPT) electric vehicle (EV) mutual inductance |
url | http://www.mdpi.com/1996-1073/11/3/624 |
work_keys_str_mv | AT ainurrakhymbay preciseanalysisonmutualinductancevariationindynamicwirelesschargingofelectricvehicle AT anvarkhamitov preciseanalysisonmutualinductancevariationindynamicwirelesschargingofelectricvehicle AT mehdibagheri preciseanalysisonmutualinductancevariationindynamicwirelesschargingofelectricvehicle AT batyrbekalimkhanuly preciseanalysisonmutualinductancevariationindynamicwirelesschargingofelectricvehicle AT maximlu preciseanalysisonmutualinductancevariationindynamicwirelesschargingofelectricvehicle AT toanphung preciseanalysisonmutualinductancevariationindynamicwirelesschargingofelectricvehicle |