Surface-plasmon-polariton-driven narrow-linewidth magneto-optics in Ni nanodisk arrays

The field of magnetoplasmonics exploits interactions between light and magnetic matter at the nanoscale for light manipulation and resonant magneto-optics. One of the great challenges of this field is overcoming optical losses in magnetic metals. Here, we exploit surface plasmon polaritons (SPPs) ex...

Full description

Bibliographic Details
Main Authors: Freire-Fernández Francisco, Kataja Mikko, van Dijken Sebastiaan
Format: Article
Language:English
Published: De Gruyter 2019-12-01
Series:Nanophotonics
Subjects:
Online Access:http://www.degruyter.com/view/j/nanoph.2020.9.issue-1/nanoph-2019-0331/nanoph-2019-0331.xml?format=INT
_version_ 1830179192367480832
author Freire-Fernández Francisco
Kataja Mikko
van Dijken Sebastiaan
author_facet Freire-Fernández Francisco
Kataja Mikko
van Dijken Sebastiaan
author_sort Freire-Fernández Francisco
collection DOAJ
description The field of magnetoplasmonics exploits interactions between light and magnetic matter at the nanoscale for light manipulation and resonant magneto-optics. One of the great challenges of this field is overcoming optical losses in magnetic metals. Here, we exploit surface plasmon polaritons (SPPs) excited at the interface of an SiO2/Au bilayer to induce strong magneto-optical responses on the Ni nanodisks of a periodic array. Using a reference system made of Au nanodisks, we show that optical losses in Ni hardly broaden the linewidth of SPP-driven magneto-optical signals. Loss mitigation is attained because the free electrons in the Ni nanodisks are driven into forced oscillations away from their plasmon resonance. By varying the SiO2 layer thickness and lattice constant of the Ni nanodisk array, we demonstrate tailoring of intense magneto-optical Kerr effects with a spectral linewidth down to ~25 nm. Our results provide important hints on how to circumvent optical losses and enhance magneto-optical signals via the design of off-resonance magnetoplasmonic driving mechanisms.
first_indexed 2024-12-17T19:55:26Z
format Article
id doaj.art-9f56997b12ae48f882269e3bbe6a443e
institution Directory Open Access Journal
issn 2192-8614
language English
last_indexed 2024-12-17T19:55:26Z
publishDate 2019-12-01
publisher De Gruyter
record_format Article
series Nanophotonics
spelling doaj.art-9f56997b12ae48f882269e3bbe6a443e2022-12-21T21:34:37ZengDe GruyterNanophotonics2192-86142019-12-019111312110.1515/nanoph-2019-0331nanoph-2019-0331Surface-plasmon-polariton-driven narrow-linewidth magneto-optics in Ni nanodisk arraysFreire-Fernández Francisco0Kataja Mikko1van Dijken Sebastiaan2NanoSpin, Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076 Aalto, FinlandNanoSpin, Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076 Aalto, FinlandNanoSpin, Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076 Aalto, FinlandThe field of magnetoplasmonics exploits interactions between light and magnetic matter at the nanoscale for light manipulation and resonant magneto-optics. One of the great challenges of this field is overcoming optical losses in magnetic metals. Here, we exploit surface plasmon polaritons (SPPs) excited at the interface of an SiO2/Au bilayer to induce strong magneto-optical responses on the Ni nanodisks of a periodic array. Using a reference system made of Au nanodisks, we show that optical losses in Ni hardly broaden the linewidth of SPP-driven magneto-optical signals. Loss mitigation is attained because the free electrons in the Ni nanodisks are driven into forced oscillations away from their plasmon resonance. By varying the SiO2 layer thickness and lattice constant of the Ni nanodisk array, we demonstrate tailoring of intense magneto-optical Kerr effects with a spectral linewidth down to ~25 nm. Our results provide important hints on how to circumvent optical losses and enhance magneto-optical signals via the design of off-resonance magnetoplasmonic driving mechanisms.http://www.degruyter.com/view/j/nanoph.2020.9.issue-1/nanoph-2019-0331/nanoph-2019-0331.xml?format=INTmagnetoplasmonicsnanoparticle arraysurface plasmon polaritonsurface lattice resonancemagneto-optical kerr effect
spellingShingle Freire-Fernández Francisco
Kataja Mikko
van Dijken Sebastiaan
Surface-plasmon-polariton-driven narrow-linewidth magneto-optics in Ni nanodisk arrays
Nanophotonics
magnetoplasmonics
nanoparticle array
surface plasmon polariton
surface lattice resonance
magneto-optical kerr effect
title Surface-plasmon-polariton-driven narrow-linewidth magneto-optics in Ni nanodisk arrays
title_full Surface-plasmon-polariton-driven narrow-linewidth magneto-optics in Ni nanodisk arrays
title_fullStr Surface-plasmon-polariton-driven narrow-linewidth magneto-optics in Ni nanodisk arrays
title_full_unstemmed Surface-plasmon-polariton-driven narrow-linewidth magneto-optics in Ni nanodisk arrays
title_short Surface-plasmon-polariton-driven narrow-linewidth magneto-optics in Ni nanodisk arrays
title_sort surface plasmon polariton driven narrow linewidth magneto optics in ni nanodisk arrays
topic magnetoplasmonics
nanoparticle array
surface plasmon polariton
surface lattice resonance
magneto-optical kerr effect
url http://www.degruyter.com/view/j/nanoph.2020.9.issue-1/nanoph-2019-0331/nanoph-2019-0331.xml?format=INT
work_keys_str_mv AT freirefernandezfrancisco surfaceplasmonpolaritondrivennarrowlinewidthmagnetoopticsinninanodiskarrays
AT katajamikko surfaceplasmonpolaritondrivennarrowlinewidthmagnetoopticsinninanodiskarrays
AT vandijkensebastiaan surfaceplasmonpolaritondrivennarrowlinewidthmagnetoopticsinninanodiskarrays