Applying Deep Learning for Improving Image Classification in Nuclear Fusion Devices

Deep learning has become one of the most promising approaches in recent years. One of the main applications of deep learning is the automatic feature extraction with auto-encoders (AEs). Feature extraction, one of the most important stages in machine learning, that can reduce drastically the dimensi...

Full description

Bibliographic Details
Main Authors: Gonzalo Farias, Ernesto Fabregas, Sebastian Dormido-Canto, Jesus Vega, Sebastian Vergara, Sebastian Dormido Bencomo, Ignacio Pastor, Alvaro Olmedo
Format: Article
Language:English
Published: IEEE 2018-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/8537905/
_version_ 1818874770628804608
author Gonzalo Farias
Ernesto Fabregas
Sebastian Dormido-Canto
Jesus Vega
Sebastian Vergara
Sebastian Dormido Bencomo
Ignacio Pastor
Alvaro Olmedo
author_facet Gonzalo Farias
Ernesto Fabregas
Sebastian Dormido-Canto
Jesus Vega
Sebastian Vergara
Sebastian Dormido Bencomo
Ignacio Pastor
Alvaro Olmedo
author_sort Gonzalo Farias
collection DOAJ
description Deep learning has become one of the most promising approaches in recent years. One of the main applications of deep learning is the automatic feature extraction with auto-encoders (AEs). Feature extraction, one of the most important stages in machine learning, that can reduce drastically the dimensionality of the problem, making easier any subsequent process such as classification. The main contribution of this research is to evaluate the use of AEs for automatic feature extraction in massive thermonuclear fusion databases. In order to show the performance of AEs in a practical way, the problem of image classification of the TJ-II Thomson Scattering diagnostic has been selected. The classification has been performed by the algorithm of support vector machines and conformal predictors. The results show that the use of AEs produces the predictions faster, with more reliable models, and with higher success rates in comparison to the performance without using the deep learning approach.
first_indexed 2024-12-19T13:15:53Z
format Article
id doaj.art-9f5802444ce54d75989d71d35a924152
institution Directory Open Access Journal
issn 2169-3536
language English
last_indexed 2024-12-19T13:15:53Z
publishDate 2018-01-01
publisher IEEE
record_format Article
series IEEE Access
spelling doaj.art-9f5802444ce54d75989d71d35a9241522022-12-21T20:19:49ZengIEEEIEEE Access2169-35362018-01-016723457235610.1109/ACCESS.2018.28818328537905Applying Deep Learning for Improving Image Classification in Nuclear Fusion DevicesGonzalo Farias0https://orcid.org/0000-0003-2186-4126Ernesto Fabregas1https://orcid.org/0000-0003-4478-6626Sebastian Dormido-Canto2Jesus Vega3Sebastian Vergara4Sebastian Dormido Bencomo5Ignacio Pastor6Alvaro Olmedo7Escuela de Ingeniería Eléctrica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2147, Valparaíso, ChileDepartamento de Informática y Automática, Universidad Nacional de Educación a Distancia, Madrid, SpainDepartamento de Informática y Automática, Universidad Nacional de Educación a Distancia, Madrid, SpainLaboratorio Nacional de Fusión, CIEMAT, Madrid, SpainEscuela de Ingeniería Eléctrica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2147, Valparaíso, ChileDepartamento de Informática y Automática, Universidad Nacional de Educación a Distancia, Madrid, SpainLaboratorio Nacional de Fusión, CIEMAT, Madrid, SpainDepartamento de Informática y Automática, Universidad Nacional de Educación a Distancia, Madrid, SpainDeep learning has become one of the most promising approaches in recent years. One of the main applications of deep learning is the automatic feature extraction with auto-encoders (AEs). Feature extraction, one of the most important stages in machine learning, that can reduce drastically the dimensionality of the problem, making easier any subsequent process such as classification. The main contribution of this research is to evaluate the use of AEs for automatic feature extraction in massive thermonuclear fusion databases. In order to show the performance of AEs in a practical way, the problem of image classification of the TJ-II Thomson Scattering diagnostic has been selected. The classification has been performed by the algorithm of support vector machines and conformal predictors. The results show that the use of AEs produces the predictions faster, with more reliable models, and with higher success rates in comparison to the performance without using the deep learning approach.https://ieeexplore.ieee.org/document/8537905/Images classificationauto-encoderfuture extractionnuclear fusion
spellingShingle Gonzalo Farias
Ernesto Fabregas
Sebastian Dormido-Canto
Jesus Vega
Sebastian Vergara
Sebastian Dormido Bencomo
Ignacio Pastor
Alvaro Olmedo
Applying Deep Learning for Improving Image Classification in Nuclear Fusion Devices
IEEE Access
Images classification
auto-encoder
future extraction
nuclear fusion
title Applying Deep Learning for Improving Image Classification in Nuclear Fusion Devices
title_full Applying Deep Learning for Improving Image Classification in Nuclear Fusion Devices
title_fullStr Applying Deep Learning for Improving Image Classification in Nuclear Fusion Devices
title_full_unstemmed Applying Deep Learning for Improving Image Classification in Nuclear Fusion Devices
title_short Applying Deep Learning for Improving Image Classification in Nuclear Fusion Devices
title_sort applying deep learning for improving image classification in nuclear fusion devices
topic Images classification
auto-encoder
future extraction
nuclear fusion
url https://ieeexplore.ieee.org/document/8537905/
work_keys_str_mv AT gonzalofarias applyingdeeplearningforimprovingimageclassificationinnuclearfusiondevices
AT ernestofabregas applyingdeeplearningforimprovingimageclassificationinnuclearfusiondevices
AT sebastiandormidocanto applyingdeeplearningforimprovingimageclassificationinnuclearfusiondevices
AT jesusvega applyingdeeplearningforimprovingimageclassificationinnuclearfusiondevices
AT sebastianvergara applyingdeeplearningforimprovingimageclassificationinnuclearfusiondevices
AT sebastiandormidobencomo applyingdeeplearningforimprovingimageclassificationinnuclearfusiondevices
AT ignaciopastor applyingdeeplearningforimprovingimageclassificationinnuclearfusiondevices
AT alvaroolmedo applyingdeeplearningforimprovingimageclassificationinnuclearfusiondevices