Parametric Analysis and Experimental Verification of a Hybrid Vibration Energy Harvester Combining Piezoelectric and Electromagnetic Mechanisms
Considering coil inductance and the spatial distribution of the magnetic field, this paper developed an approximate distributed-parameter model of a hybrid energy harvester (HEH). The analytical solutions were compared with numerical solutions. The effects of load resistances, electromechanical coup...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2017-06-01
|
Series: | Micromachines |
Subjects: | |
Online Access: | http://www.mdpi.com/2072-666X/8/6/189 |
_version_ | 1819130665842507776 |
---|---|
author | Zhenlong Xu Xiaobiao Shan Hong Yang Wen Wang Tao Xie |
author_facet | Zhenlong Xu Xiaobiao Shan Hong Yang Wen Wang Tao Xie |
author_sort | Zhenlong Xu |
collection | DOAJ |
description | Considering coil inductance and the spatial distribution of the magnetic field, this paper developed an approximate distributed-parameter model of a hybrid energy harvester (HEH). The analytical solutions were compared with numerical solutions. The effects of load resistances, electromechanical coupling factors, mechanical damping ratio, coil parameters and size scale on performance were investigated. A meso-scale HEH prototype was fabricated, tested and compared with a stand-alone piezoelectric energy harvester (PEH) and a stand-alone electromagnetic energy harvester (EMEH). The peak output power is 2.93% and 142.18% higher than that of the stand-alone PEH and EMEH, respectively. Moreover, its bandwidth is 108%- and 122.7%-times that of the stand-alone PEH and EMEH, respectively. The experimental results agreed well with the theoretical values. It is indicated that the linearized electromagnetic coupling coefficient is more suitable for low-level excitation acceleration. Hybrid energy harvesting contributes to widening the frequency bandwidth and improving energy conversion efficiency. However, only when the piezoelectric coupling effect is weak or medium can the HEH generate more power than the single-mechanism energy harvester. Hybrid energy harvesting can improve output power even at the microelectromechanical systems (MEMS) scale. This study presents a more effective model for the performance evaluation and structure optimization of the HEH. |
first_indexed | 2024-12-22T09:03:14Z |
format | Article |
id | doaj.art-9f74ddf2a3e74947acaf488d749672fb |
institution | Directory Open Access Journal |
issn | 2072-666X |
language | English |
last_indexed | 2024-12-22T09:03:14Z |
publishDate | 2017-06-01 |
publisher | MDPI AG |
record_format | Article |
series | Micromachines |
spelling | doaj.art-9f74ddf2a3e74947acaf488d749672fb2022-12-21T18:31:40ZengMDPI AGMicromachines2072-666X2017-06-018618910.3390/mi8060189mi8060189Parametric Analysis and Experimental Verification of a Hybrid Vibration Energy Harvester Combining Piezoelectric and Electromagnetic MechanismsZhenlong Xu0Xiaobiao Shan1Hong Yang2Wen Wang3Tao Xie4School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310018, ChinaSchool of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, ChinaCollege of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310029, ChinaSchool of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310018, ChinaSchool of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, ChinaConsidering coil inductance and the spatial distribution of the magnetic field, this paper developed an approximate distributed-parameter model of a hybrid energy harvester (HEH). The analytical solutions were compared with numerical solutions. The effects of load resistances, electromechanical coupling factors, mechanical damping ratio, coil parameters and size scale on performance were investigated. A meso-scale HEH prototype was fabricated, tested and compared with a stand-alone piezoelectric energy harvester (PEH) and a stand-alone electromagnetic energy harvester (EMEH). The peak output power is 2.93% and 142.18% higher than that of the stand-alone PEH and EMEH, respectively. Moreover, its bandwidth is 108%- and 122.7%-times that of the stand-alone PEH and EMEH, respectively. The experimental results agreed well with the theoretical values. It is indicated that the linearized electromagnetic coupling coefficient is more suitable for low-level excitation acceleration. Hybrid energy harvesting contributes to widening the frequency bandwidth and improving energy conversion efficiency. However, only when the piezoelectric coupling effect is weak or medium can the HEH generate more power than the single-mechanism energy harvester. Hybrid energy harvesting can improve output power even at the microelectromechanical systems (MEMS) scale. This study presents a more effective model for the performance evaluation and structure optimization of the HEH.http://www.mdpi.com/2072-666X/8/6/189hybrid energy harvesterpiezoelectricelectromagneticapproximate distributed-parameter modelparametric analysis |
spellingShingle | Zhenlong Xu Xiaobiao Shan Hong Yang Wen Wang Tao Xie Parametric Analysis and Experimental Verification of a Hybrid Vibration Energy Harvester Combining Piezoelectric and Electromagnetic Mechanisms Micromachines hybrid energy harvester piezoelectric electromagnetic approximate distributed-parameter model parametric analysis |
title | Parametric Analysis and Experimental Verification of a Hybrid Vibration Energy Harvester Combining Piezoelectric and Electromagnetic Mechanisms |
title_full | Parametric Analysis and Experimental Verification of a Hybrid Vibration Energy Harvester Combining Piezoelectric and Electromagnetic Mechanisms |
title_fullStr | Parametric Analysis and Experimental Verification of a Hybrid Vibration Energy Harvester Combining Piezoelectric and Electromagnetic Mechanisms |
title_full_unstemmed | Parametric Analysis and Experimental Verification of a Hybrid Vibration Energy Harvester Combining Piezoelectric and Electromagnetic Mechanisms |
title_short | Parametric Analysis and Experimental Verification of a Hybrid Vibration Energy Harvester Combining Piezoelectric and Electromagnetic Mechanisms |
title_sort | parametric analysis and experimental verification of a hybrid vibration energy harvester combining piezoelectric and electromagnetic mechanisms |
topic | hybrid energy harvester piezoelectric electromagnetic approximate distributed-parameter model parametric analysis |
url | http://www.mdpi.com/2072-666X/8/6/189 |
work_keys_str_mv | AT zhenlongxu parametricanalysisandexperimentalverificationofahybridvibrationenergyharvestercombiningpiezoelectricandelectromagneticmechanisms AT xiaobiaoshan parametricanalysisandexperimentalverificationofahybridvibrationenergyharvestercombiningpiezoelectricandelectromagneticmechanisms AT hongyang parametricanalysisandexperimentalverificationofahybridvibrationenergyharvestercombiningpiezoelectricandelectromagneticmechanisms AT wenwang parametricanalysisandexperimentalverificationofahybridvibrationenergyharvestercombiningpiezoelectricandelectromagneticmechanisms AT taoxie parametricanalysisandexperimentalverificationofahybridvibrationenergyharvestercombiningpiezoelectricandelectromagneticmechanisms |