High-throughput screening of hypothetical metal-organic frameworks for thermal conductivity

Abstract Thermal energy management in metal-organic frameworks (MOFs) is an important, yet often neglected, challenge for many adsorption-based applications such as gas storage and separations. Despite its importance, there is insufficient understanding of the structure-property relationships govern...

Full description

Bibliographic Details
Main Authors: Meiirbek Islamov, Hasan Babaei, Ryther Anderson, Kutay B. Sezginel, Jeffrey R. Long, Alan J. H. McGaughey, Diego A. Gomez-Gualdron, Christopher E. Wilmer
Format: Article
Language:English
Published: Nature Portfolio 2023-01-01
Series:npj Computational Materials
Online Access:https://doi.org/10.1038/s41524-022-00961-x
Description
Summary:Abstract Thermal energy management in metal-organic frameworks (MOFs) is an important, yet often neglected, challenge for many adsorption-based applications such as gas storage and separations. Despite its importance, there is insufficient understanding of the structure-property relationships governing thermal transport in MOFs. To provide a data-driven perspective into these relationships, here we perform large-scale computational screening of thermal conductivity k in MOFs, leveraging classical molecular dynamics simulations and 10,194 hypothetical MOFs created using the ToBaCCo 3.0 code. We found that high thermal conductivity in MOFs is favored by high densities (> 1.0 g cm−3), small pores (< 10 Å), and four-connected metal nodes. We also found that 36 MOFs exhibit ultra-low thermal conductivity (< 0.02 W m−1 K−1), which is primarily due to having extremely large pores (~65 Å). Furthermore, we discovered six hypothetical MOFs with very high thermal conductivity (> 10 W m−1 K−1), the structures of which we describe in additional detail.
ISSN:2057-3960